
Benchmarking the RTI for Use in a Simulated Radio Environment

David Nemeth
Advanced Simulation Technology, Inc.

441-A Carlisle Drive
Herndon, VA 20170

703-471-2104
davidn@asti-usa.com

Keywords:
Audio, Radio Environment, RTI performance, Back Channels

ABSTRACT: The RTI provides a general purpose network communications mechanism. This paper examines
how well suited it is to the particular problem of a simulated radio environment. This environment must pass both
low bandwidth transmitter/receiver information and high bandwidth audio information. Low latency, efficiency,
and scaleability are all requirements that the RTI must provide.

The ability of the RTI to meet these needs is discussed. Results on measurements for latencies, CPU usage, and
bandwidth overhead are presented and analyzed in light of the requirements of a simulated radio environment. An
analysis of whether back channels are required for the audio is given.

Measurements were performed on the DMSO RTI 1.3v4, and the MAK RTI 1.3, running on a 233 MHz AMD K6
machine with the Red Hat Linux 5.1 operating system. Comparisons are made to the current state of the art for
DIS radios.

1. Requirements for a radio
environment

The requirements for the radio environment are
simple: to fool the operator into thinking they are
using a real radio, and not a simulated one.
Practically, this places two requirements on the
transport mechanism.

The first requirement is low latency - the voice
must be transferred with a minimum of delay. In
the real world, radio signals travel with no
perceptible delay. In a simulation, experience has
shown that a latency of less than 100 ms is
sufficient for training purposes. Latency much
greater than 150-200 ms becomes noticeable to two
users carrying on a conversation. This delay
comes both from the latency in the transport layer,
as well as the latency inherent in buffering up the
audio. If the transport layer latency has any jitter
in it, the worst latency and not the average latency
will become the latency of the voice stream.

The second requirement is for a large number of

audio streams to be carried. In the real world,
there is no limit to the number of radio
conversations that can be carried out at once. In a
simulation, the number of audio streams that can
be carried will limit the number of players in the
simulation. Large team training simulators
presently fielded can have well over a hundred
operators, and hence a hundred voice streams at
once are possible. While one machine might not
be required to handle this volume of traffic, the
architecture should be scaleable enough to handle
it. Hence, a large background traffic should not
effect the latency or performance of any machines.
A cost efficient architecture (not just one or two
operators per computer) requires the individual
machine to process a large number of voice
streams. Also, each operator on a given machine
often needs the ability to receive more than one
voice stream (from different virtual radios or from
network intercom buses), so the number of voice
streams is often a multiple of the number of
operators on a machine.

2. Test procedures

All tests were run on an AMD 233 processor

running Red Hat Linux 5.1. The RTIs tested were
the DMSO 1.3v4 and the MAK 1.3. All data was
sent Best Effort.

Three tests were carried out on each RTI. In the
first, attribute updates and interactions were sent
out with various numbers of parameters/attributes
of varying sizes. The packets produced were
examined using the tcpdump utility on Linux. The
sizes of the packets as a function of the various
parameters were examined, and found to follow a
simple formula.

The second test involved a sending and a receiving
federate. Again, the sending federate sent out
attribute updates or interactions with varying sizes
and numbers of attributes or parameters. The
receiving federate was running by itself on a
separate machine. It called tick() at a 1 Hz rate,
and the time in tick was measured.

The receiving processing load was the one
measured, because there is a natural imbalance in
the flow of audio data. An operator can have at
most one voice stream going out, but is often
listening to several incoming audio streams at the
same time (which may be intercoms, radios, etc.).
This makes the receiving efficiency more critical
than the sending efficiency.

Care was taken so that only the time spent by tick()
in receiving the messages was measured.
gettimeofday() was called immediately before and
after tick(). There were no print statements during
any of the callbacks. There was no keyboard or
mouse activity, changes in the graphics, screen
savers turning on or off, etc. The callbacks in the
federate ambassador did nothing with the data,
except increment a counter to ensure the proper
number of packets were received.
Furthermore, after tick() was called, the process
paused by making a blocking read on the real time
clock. Hence, the operating system was in control
when the incoming UDP packets were received,
allowing them to be processed to the point of being
read by the RTI.

Because of these precautions, the resulting time
measured was only the amount of time required for
the RTI to handle its part of the transport process -
the time for the network layers to process the
incoming data, and the time for the federate to act

on the data are NOT included. In any real
application, of course, the received data would be
acted upon in some way.

The tick() function was configured/called in such a
way that it would process all incoming packets in a
single call. The mechanism for doing this is
different between the MAK and the DMSO RTI
implementations.

The third test involved sending audio over the RTI
and measuring the latency. Latency was measured
by placing a microphone next to the sender's
microphone and another microphone next to the
receivers speaker. Clicks were generated and sent,
and the two microphone traces were displayed on
an oscilloscope. These measurements were
performed on ASTi's HLA CoordinatorTM, a voice
over HLA product.

3. Results

3.1 Results of packet size test

The size of the data portion of the UDP packets
(not counting the UDP, IP, and ethernet headers)
that the DMSO RTI sent out depended on whether
bundling was off or on. With bundling on, the
UDP packets each contained two attribute updates
or two interactions. With bundling off, the UDP
packets only contained one attribute update or one
interaction. Bundling was controlled by changing
the RTI.rid file for the DMSO RTI. The MAK
RTI does not appear to bundle data in this way.

The packet sizes followed the following rules for
the DMSO RTI:

For attribute updates, the packet size was found to
be:
1 update per UDP packet:
packet size in bytes = 176 [RTI overhead] +
(number of attributes)*4 + (total attribute data
size)
2 updates per UDP packet:
packet size = 344 [RTI overhead]+ (number of
attributes)*4 + (total attribute data size)

For interactions, the results were:
1 interaction per UDP packet
packet size in bytes = 92 [RTI overhead] +
(number of parameters)*4 + (total parameter data

size)
2 interactions per UDP packet
packet size in bytes = 176 [RTI overhead] +
(number of parameters)*4 + (total parameter data
size)

For example, for an interaction with 3 parameters
with 10, 30, and 40 bytes of data, the size of the
data portion of the UDP packet would be:
92 [RTI overhead] + 4*3 [parameter overhead] +
10 + 30 + 40 [data size] = 184 bytes.

The results for the MAK RTI are as follows:
For attribute updates, the packet size was found to
be:
1 update per UDP packet:
packet size in bytes = 26 [RTI overhead] +
(number of attributes)*4 + (total attribute data
size)

For interactions, the results were:
1 interaction per UDP packet
packet size in bytes = 14 [RTI overhead] +
(number of parameters)*4 + (total parameter data
size)

These formulas break down when the total packet
size exceeds the maximum udp packet size of 1500
bytes. The DMSO RTI handles this by breaking
down the data structure into two udp packets,
while the MAK RTI counts on the IP layer to
fragment the data packets.

For the DMSO RTI, we see that interactions carry
a 92 byte packet overhead, plus 4 bytes for every
parameter the data is broken into. For attribute
updates, the overhead is even larger: 176 bytes.
This doesn't include the IP, UDP, and ethernet
headers.

For the MAK RTI, the packet overheads were
much smaller: 26 bytes for attribute updates, and
14 bytes for interactions.

Table 1. Packet overheads for the DMSO and
MAK RTIs

Interaction
packet overhead

Attribute
Update packet
overhead

DMSO RTI 92 bytes 176 bytes
MAK RTI 14 bytes 26 bytes

3.2 Results of tick timing test

The timing tests required a more careful analysis
than the packet size test, because there was
significant variation in the tick times in a given
run for receiving the same amount of data. All
tests were performed with bundling off.

The tick timing test measures the amount of time
the RTI takes to receive data and pass it to the
federate through a federate ambassador callback.
As mentioned above, care was taken to measure
only the time in took the RTI to get the data from
the network layers and pass it back to the federate
ambassador. It's important to remember what is
NOT included in this time: the time the OS
spends handling the network layers, and the time
the federate spends actually doing things with this
data. Hence, these results represent an upper
bound to how much data the RTI can handle - the
actual amount is going to be much less.

We would expect the time spent in tick to follow
the following formula:
total time = t1 + Np*(t2 + t3*Na + t4*Nd)
where
Np = number of packets received in a tick()
Na = number of attributes/parameters per packet
Nd = total amount of data per packet (the sum of
the data from ALL the attributes/parameters)

t1,t2,t3, and t4 are times which are fit to the data,
which can be interpreted as follows:

t1 = time spent in tick doing things other than data
handling. The RTI, in a normal simulation, will
be doing many other things: providing DDM
services, discovering and publishing objects, etc.
These things would all fall under t1. In this
experiment, the federate used none of these
services, hence this is a nominal value.

t2 = the overhead time spent dealing with a packet
of data containing an attribute update or
interaction.

t3 = the overhead time spent dealing with each
attribute or parameter within one packet

t4 = the time spent handling each byte of actual
data

Table 2 shows the values for t1,t2,t3 and t4 for
interactions and attribute updates for the DMSO
RTI. Table 3 shows similar results for the MAK
RTI. Figures 1 and 2 show graphs of the predicted
versus actual values for several points (note the
difference in scales on the y axes for the two
graphs.) The formula predict the average time to
within 5%. Note, however, that the time measured
deviates from the average by as much as a
millisecond in either direction - the exact cause of
this is unknown.

Table 2. Parameters for formulae for the DMSO
RTI. All values in ms.

t1 t2 t3 t4
Attribute
Updates

1.7 0.52 0.011 3.1 x 10-5

Interactions 1.8 0.38 0.009 5.8 x 10-5

Table 3. Parameters for formulae for the MAK
RTI. All values in ms.

t1 t2 t3 t4
Attribute
Updates

0.21 0.08 0.0065 5.1 x 10-5

Interactions 0.15 0.07 0.007 5.3 x 10-5

In both the MAK and DMSO RTIs, tick() would
only process around 36 incoming packets. The
remaining packets were lost. 36 was not a hard
number - sometimes it would be more, and
sometimes less. 32 packets per tick seemed to pose
no problems. Because this was true for both the
MAK and the DMSO RTI, the problem probably
lies in the network layer configuration of the
system, and had nothing to do with the RTIs
themselves. It would be expected that
reconfiguring the systems network layers (which is
certainly possible with Linux) would solve this
problem. For the purposes of this paper we will
assume this is not a fundamental limitation.

The time spent processing by the network layers
can be measured by sending a large number of
interactions over the network and watch the CPU
usage with the tool xosview. For interactions with
256 bytes of data, the network layers spend about

0.04 ms per packet. This is small on the scale of
the DMSO RTI cpu usage, but significant for the
MAK RTI.

3.3 Results of the Latency test

The latency is the amount of delay in an audio
stream sent from one machine to another over the
RTI. As noted above, latencies should be kept to
100 ms or below to prevent them from being too
noticeable to the operator. Audio was sent out as
interactions, each containing 1/32 seconds of audio
data. Audio was sent out best effort. For both the
MAK and DMSO RTIs, the latency was unaffected
by adding additional audio streams, up to a limit of
about 35. At this point, the audio packets started
to get dropped, resulting in voice breakup. (It is
fair to assume, as was mentioned above, that the
losing of packets was due to the network layer, and
was not inherent to either RTIs.)

Latency has two components - the latency of the
transport mechanism, and the latency inherent in
the audio buffering scheme. By way of
comparison, a currently available DIS radio
environment1 has an 80 ms latency end to end on
a LAN, and sends out audio packets containing
about 30 ms of audio data. This latency includes a
built in delay of 20 ms, which is effected by
buffering up audio in the receiver to provide
robustness in the face of network latency jitter.

It should be noted that the Red Hat Linux
Operating system is not real time. Because of the
non-real time nature of the operating system, it
made a difference what the process priorities were
set to. Running at normal priority ran with a 10
ms greater latency for both RTIs than running at a
boosted priority level. The non real time nature
becomes more problematic if there are disk
accesses or other time consuming processes going
on at the same time. When sending audio over
networks, care must be taken to minimize the
effect of the non-real time nature of an operating
system.

1 The radio environment referred to is the one used
in the ASTi Digital Audio Communications
System (DACS). The author knows of no other
DIS radio implementations with this level of
performance, but he may be biased.

To further reduce the latency, the receiving
federate was called at 64 Hz, twice the rate of the
sending federate. Running the receiver at twice
the rate of the transmitter reduces the latency with
little additional processing overhead, because the
same number of packets are being received.

At a boosted priority level with the sending
federate sending audio at 32 Hz and the receiving
federate running at 64 Hz, the latency in the audio
was 65 ms for the MAK RTI and 70 ms for the
DMSO RTI. As with the DIS system, some extra
buffering on the receive side would be desirable to
reduce the sensitivity to jitter in the latency. Table
4 reflects what the latency would be with this
added guard:

Table 3 Latencies under optimum conditions, 31
ms audio packets
DMSO RTI 70 ms + 20 ms buffering = 90 ms.
MAK RTI 65 ms + 20 ms buffering = 85 ms
Current DIS, with guard buffering = 80 ms

We see that the latency is acceptable for both RTIs,
as long as the audio transport is done correctly.
Without proper timing and priority management it
can rapidly degrade.

4. Discussion

Two RTIs - the MAK RTI and the DMSO RTI -
have been benchmarked for use with a real time
radio environment. An accurate analysis of the
results cannot be given with out some further
observations about the two RTIs.

The MAK RTI does not currently implement all of
the services required by the HLA specification.
These include time management, reliable
transport, data distribution management, and
others. Some of these, including time management
and reliable transport, are of little or no use in a
real time radio environment. Some of them,
particularly data distribution management, will
play a crucial role in scaling systems up to
accommodate a large number of voice streams.
Because it lacks these services, it is not really a
full-up RTI yet.

The DMSO RTI performs all of these services, but
as we will discuss, it pays a price for doing so. The
price is paid both in network bandwidth because of

the large packet headers, and in the CPU usage, as
reflected in the tick() timing measurements.

This paper also does not address the question of
how well the DMSO data distribution services
work, which is crucial to the question of
scaleability. It is important that the unwanted
audio streams be effectively filtered out in
hardware, not software. How well the DMSO RTI
can assign the multicast address based on the
“routing space” API was not examined in this
paper. Of course, the MAK RTI does not provide
the services at all at this point.

With these caveats in mind, we can proceed with
the discussion.
Keeping packet overhead low is important in the
transport of audio data over computer networks.
When the packet overhead is comparable in size to
the audio data, the scaleability of the system is
directly affected. This can be a problem in
situations where bandwidth is limited (WAN’s and
T1 lines, for example) and when a large number of
voice streams are put onto the system.

Voice compression is of limited use in this
situation, because it does not compress the header.
For 31 ms packets, the audio data is 248 bytes long
(mulaw) and the header for the DMSO RTI is 92
bytes. Even if you were to achieve 10:1
compression over mulaw, the final packet would be
117 bytes, giving you less than 3 : 1 compression
overall. Sophisticated compression schemes also
take a good deal of processing time, and have
varying voice quality and varying sensitivity to
background noise. So small packet overheads are
important to audio communications over networks,
and large packet overheads make voice
compression much less effective in reducing
bandwidth.

The packet overhead on the DMSO RTI packets
was quite large, and would have a significant effect
on the bandwidth usage of the system.
Furthermore, the CPU usage places a fundamental
limit of around 70 voice streams. At 70 voice
streams, the RTI would only have time to pull the
packets from the sockets, and not leave the federate
any time to do anything. Of course, the federate
in a radio environment has a lot of other things to
do, so the number of voice streams actually
handled would be much less than 70.

The MAK RTI could handle a larger number of
voice streams, with a theoretical maximum of 200
to 300 voice streams. Again, this is limit where
the RTI takes all the CPU time to pass the data to
the federate ambassador, leaving no time for the
federate to do anything. In a real radio
environment, where the federate has other
computational tasks, this number would be much
lower. Also, without hardware filtering of the
unwanted audio data (which a well implemented
DDM should provide) this places a fundamental
limit on the total number of voice streams in an
exercise.

By contrast, the current DIS radio products2

available reach this limit at 1000 voice streams
(ignoring 240 voice streams with 31 ms packets
requires 25% of the CPU time on a 233 MHz
machine without hardware filtering.) In addition,
the current DIS radio products have been extended
to use multicast addresses to filter unwanted audio
in the hardware.

5. Conclusion

The DMSO RTI is capable of handling a modest
number of voice streams, and can do so with an
acceptable latency. A close examination of the
network packets produced and of the time
consumed by the CPU in receiving these packets
show that audio is not handled very efficiently by
the DMSO RTI. Furthermore, audio compression
will not significantly help with the bandwidth
consumption, and will consume even more CPU
processing. Because of this, the DMSO RTI is not
suitable for handling a large amount of audio data,
especially if the audio federate has other time-
consuming tasks to perform, such as managing a
radio environment associated with those audio
streams. It is also poorly suited in situations where
bandwidth is limited. Because of this, for serious
applications, back channels would be required for
audio transport.

The MAK RTI has much more acceptable packet
overheads and processing requirements. However,
it is not yet a fully compliant RTI. Furthermore,
without data distribution management services that
filters at the hardware level, it places a

2 The ASTi DACS, again

fundamental limitation on the number of audio
streams that can be used in an exercise. In its
current form, back channels for the audio would
also be required for any serious application.

Contact Information
A copy of this paper can be found at www.asti-
usa.com. The author can be reached by e-mail at
davidn@asti-usa.com. The DMSO RTI can be
downloaded from hla.DMSO.mil, and the MAK
RTI is available from www.MAK.com.

Figures

DMSO RTI
Time in tick()

Na = 1, Nd = 100

0

5

10

15

20

0 5 10 15 20 25 30 35

number of updates/interactions received

ti
m

e
(m

s)

Interactions

min

max

Pred

Attributes

min

max

Pred

Fig 1.1 Processing time vs. Packets received, DMSO RTI

DMSO RTI
Time in tick()

Np = 16 Nd = 1000

7

8

9

10

11

12

13

14

0 2 4 6 8 10

Number of Parameters/Attributes

ti
m

e
(m

s)

Interactions

min

max

Pred

Attributes

min

max

Pred

Fig 1.2 Processing time vs. The number of attributes/parameters in the packet, DMSO RTI

DMSO RTI
time in tick()

Na = 1 Np = 16

6

7

8

9

10

11

12

0 200 400 600 800 1000 1200

Bytes of Data

ti
m

e
(m

s)

Interactions

min

max

Pred

Attributes

min

max

Pred

 Fig 1.3 Processing time vs. The data size of the packet, DMSO RTI

MAK RTI
time in tick()

Na =1 Nd =100

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

Number of Packets received

ti
m

e
(m

s)

Interactions

min

max

Pred

Attributes

min

max

Pred

Fig 2.1 Processing time vs. Packets received, MAK RTI. Note the difference in scale on the y axis with Fig 1.1

MAK RTI
time in tick()

Np = 16 Nd = 1000

2

2.5

3

3.5

4

0 2 4 6 8 10

Number Attributes/Parameters

ti
m

e
(m

s)

Interactions

min

max

Pred

Attributes

min

max

Pred

Fig 2.2 Processing time vs. Attributes/Parameters per packet, MAK RTI

MAK RTI
time in tick()

Na = 1 Np = 16

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200

Bytes of data

ti
m

e
(m

s)

Interactions

min

max

Pred

Attributes

min

max

Pred

Fig 2.3 Processing time vs. Data size of packet, MAK RTI

