

Studio Components Reference Guide

Revision T Version 1 July 2025 Document DOC-TEL-ASC-RM-T-1 Advanced Simulation Technology inc. 500A Huntmar Park Drive • Herndon, Virginia 20170 USA (703) 471-2104 • asti-usa.com

Studio Components Reference Guide

© Copyright ASTi 2025

Restricted rights: copy and use of this document are subject to terms provided in ASTi's Software License Agreement (<u>www.asti-usa.com/license.html</u>).

ASTi 500A Huntmar Park Drive Herndon, Virginia 20170 USA

Red Hat Enterprise Linux (RHEL) Subscriptions

ASTi is an official Red Hat Embedded Partner. ASTi-provided products based on RHEL include Red Hat software integrated with ASTi's installation. ASTi includes a Red Hat subscription with every purchase of our Software and Information Assurance (SW/IA) maintenance products. Systems with active maintenance receive Red Hat software updates and support directly from ASTi.

Export Restriction

Countries other than the United States may restrict the import, use, or export of software that contains encryption technology. By installing this software, you agree that you shall be solely responsible for compliance with any such import, use, or export restrictions. For full details on Red Hat export restrictions, go to the following:

www.redhat.com/en/about/export-control-product-matrix

Revision history

Date	Revision	Version	Comments
2/26/2009	Preliminary	0	(4.14) New components include ByteToBit , ByteMerger , CellIn , CellOut , VibrationCapture , and IntercomTransceiver . Updated components include CommPanel components for optimization. Fixed components include PFilter and AutoDRED for gain defaults.
3/13/2009	Preliminary	1	(4.15) New components include Demux , Envelope , PEnvelope , Incrementer , FDACP (for a specific program).
4/27/2009	Preliminary	2	(4.16) New components include Compressor , internal testing components, and program-specific components.
6/30/2009	A	0	(4.18) New components include Audio/Delay , Mes- sageList updated and moved to Audio group, ACU2channel , RadiusChannel , Satellite , and pro- gram-specific components.
8/04/2009	В	0	(4.19) New components include NoiseSource , Tex- tToSpeech , and program-specific components. Updated/fixed components included AutoDRED , MessageList , RecordReplay , Satellite , Trans- ceiver , and Relay .
9/19/2009	В	1	(4.20) New components include 5BandFilter , MultiFilter , ACE_RIU_SerialByteOut , ACU2_Seri- alByteOut , and VoisusChannel . Updated/fixed com- ponents include Compressor .
10/29/2009	С	0	(4.21) New components include Delay . Updated/fixed components include Compressor , AutoDRED , Mixer , ACU2 , and Satellite .
11/24/2009	С	1	(4.22) Updated/fixed components include Wave , MorseKeyer , Delay , Compressor , and Trans-ceiver .
1/27/2010	D	0	(4.23) New components include SimpleMixer , Com- mPanel8Stereo , AGC , CompressorLimiter , Expander , Gate , and ColocatedBeacon . Updated components include Playsound , MorseKeyer , and MarkerTone ,
3/22/2010	D	1	(4.24) Updated components include Transceiver , VORTAC_Controller , and RCUbasic .

Date	Revision	Version	Comments		
5/24/2010	E	0	(4.26) New components include PulseStream and PassThrough . Updated components include AmpOut and Incrementer .		
9/24/2010	F	0	(4.28) Updated components include Relay .		
11/22/2010	F	1	(4.29) Updated components include 5BandFilter .		
2/23/2011	G	0	(4.30) New components include ByteSplitter and PulseStep .		
4/29/2011	Н	0	(4.31) New components include Com- mPanel8HRTF4 , HRTFOut4 , and URC-200 .		
7/2011	Н	1	(4.32) Updated components include Playsound .		
9/2011	Н	2	(4.33) Updated components include Demux .		
11/29/2011	I	0	(4.34) New components include PulseSequence .		
12/2011	I	1	Updated components include Playsound , Counter , RCUbasic , and Transceiver .		
3/19/2012	J	0	N/A		
2/28/2013	K	0	N/A		
6/14/2013	L	0	N/A		
1/29/2014	М	0	N/A		
N/A	Ν	0	N/A		
2/9/2016	0	0	Fixed broken link and makes small updates.		
9/26/2017	Ρ	0	(6.4.0) Added SpeakerEQ component description as well as "Set up and run SpeakerEQ" and "Tune SpeakerEQ."Added "StereoWavRecord".		
12/1/2017	Р	1	Added caution note to "StereoWavRecord".		
1/18/2018	Р	2	Removed incorrect hyperlink in "Transceiver" sec- tion.		
4/30/2018	Q	0	Changed <i>EngineLit</i> variable's type to Boolean in "EngineLevelD."		
8/24/2018	Q	1	Added caution note to "Set up and run SpeakerEQ" and made minor style changes to "Set up and run SpeakerEQ" and "Tune SpeakerEQ."		
2/21/2020	R	0	(7.5.0) Documented <i>CryptoSys</i> input control in RCU-basic . Added FilterBank and IcomBalancer8 components. Edited content for grammar and accuracy.		

Date	Revision	Version	Comments	
3/29/2021	S	0	Documented <i>TxCryptoSoundIdx</i> and <i>RxCryptoSoundIdx</i> in Transceiver and <i>SoundIndex</i> , <i>Trigger</i> , and <i>LibraryId</i> in Playsound . Documented RTPStream and added "Add an RTP Stream Map" and "Assign the RTP Stream Map to a Telestra server." Made other minor grammar and style updates.	
9/27/2022	S	1	Updated the <i>PTTselect</i> description in "ACUchannel." Removed "license" descriptions in the Red Hat Enter- prise Linux export statement in the front matter.	
2/13/2022	S	2	Documented the tsr2wav.py script in "RecordRe- play."	
3/8/2023	S	3	Updated the Red Hat Enterprise Linux subscription and export statement to the front matter.	
1/19/2024	S	4	Updated deprecated "Target," "ACE," and "Remote Management System" terminology; fixed position behavior error in "StereoWavRecord."	
3/11/2025	S	5	Added 25 ms packet length to "RTPStream." Removed dangling AudioOut variable and fixed inac- curate mono/stereo audio input and output statement in "ACU2channel."	
4/30/2025	Т	0	Improved RTPStream map parameter wording in "Add an RTP Stream Map," fixed a conditions error, and made minor edits to grammar and style through- out the document.	
7/8/2025	Т	1	In "RTPStream," clarified which byte order Telestra uses to encode RTP streams and added a Byte Order column to the RTPStream payload formats table.	

Contents

1.0 Introduction	1
1.1 Component viewer	2
2.0 Audio components	3
2.1 AmpMod	3
2.2 AudioFeed	5
2.3 AutoDRED	5
2.3.1 Set up AutoDRED	8
2.4 ComplexPlaysound	10
2.5 Compressor	13
2.6 Delay	21
2.7 Demux	22
2.8 Envelope	23
2.9 Filter	24
2.10 Lockout	27
2.11 LevelDCapture	29
2.12 MessageList	32
2.13 Mixer	34
2.14 NoiseSource	36
2.15 PEnvelope	40
2.16 PFilter	41
2.17 Playsound	42
2.18 Pulse	45
2.19 PulseSequence	48
2.20 PulseStep	50
2.21 PulseStream	53
2.22 RecordReplay	59
2.23 SimpleMixer	64
2.24 Sequencer	65
2.25 StereoWavRecord	66

2.26 VolumeControl	
2.27 Vox	
2.28 Wave	
3.0 AudiolO	
4.0 CommPanel	
4.1 CommPanel 4, 8, 16, 32	
4.2 CommPanel8Stereo	
4.3 StereoCommPanel	
5.0 Control	
5.1 BitToByte	
5.2 ByteToBit	
5.3 ByteMerger	
5.4 ByteSplitter	
5.5 Counter	
5.6 Delay	
5.7 Ident	
5.8 Incrementer	
5.9 IntCompare	
5.10 IntFlexTable	
5.11 IntTable	
5.12 Latch	
5.13 LogicTable	
5.14 MathFunction	
5.15 NumToString	
5.16 PassThrough	
6.0 Dynamics	
6.1 AGC	
6.2 CompressorLimiter	
6.3 Expander	
6.4 Gate	

7.0 Environmental Cue	
7.1 5BandFilter	
7.2 Engine	
7.3 EngineLevelD	
7.4 MultiFilter	
7.5 PropRotor	
7.6 SpeakerEQ	
7.6.1 Set up and run SpeakerEQ	
7.6.2 Tune SpeakerEQ	
7.7 VibrationCapture	
7.8 FilterBank	
7.9 FilterPlan	
8.0 Highway Service	
8.1 AuralCue	
8.2 AuralCuePosn	
8.3 SpeakerOutput	
9.0 Highway 3D Service	
9.1 Audio > Audio Feed	
9.2 Feeders > AuralCuePosn	
9.3 Feeders > Balancer1, 4, 8, 16	
9.4 AudioIO > Headphone3DOut	
9.5 AudiolO > HighwayOut	
9.6 AudioIO > SpeakerOut	
10.0 HRTFService	
10.1 HRTFOut4	
10.2 CommPanel8HRTF4	
11.0 IOInterfaces	
11.1 ACE_RIU_channel	
11.2 ACE_RIU_SerialByteOut	
11.3 ACUchannel	

11.4 ACU2channel	
11.5 ACU2_SerialByteOut	
11.6 AmpOut	
11.7 RTPStream	
11.7.1 Add an RTP Stream Map	
11.7.2 Assign the RTP Stream Map to a Telestra server	
11.8 SerialPort	
11.9 VoisusChannel	
12.0 Intercom	
12.1 IcomBalancer8	
12.2 IcomRx	
12.3 IcomTx	
12.4 Intercom_Bus_Power	
12.5 IntercomBusService	
13.0 Platform	
13.1 Detonation	
13.2 Entity	
13.3 Fire	
13.4 GeocentricWorldPosition	
13.5 GeodeticWorldPosition	
13.6 RelativePosition	
14.0 Host Control	
14.1 HostIn	
14.2 HostOut	
14.3 CellService	
14.3.1 CellIn	
14.3.2 CellOut	
15.0 Radio	
15.1 ColocatedBeacon	
15.2 GenericControl	

15.3 HfServer	
15.4 IntercomTransceiver	
15.5 ICU	
15.6 MarkerTone	
15.7 MorseKeyer	
15.8 RCUbasic	
15.9 Receiver	
15.10 Relay	
15.11 Satellite	
15.12 Transceiver	
15.13 Transmitter	
15.14 VORTAC_Controller	
16.0 Speech	
16.1 SpeechFeed	
16.2 TextToSpeech	
17.0 Remote Control	
17.1 URC-200	268

1.0 Introduction

Studio is a powerful suite of software tools providing a software development toolkit for building sound and communications models. In Studio, models are developed using an array of complex components.

By modifying the components, you can construct anything from a small simulation element to a complete sound and communications audio modeling system for your application. In other words, the components are flexible enough to let you construct basic intercom systems and models that closely match the functionality of a commercial or military platform communication system.

The purpose of this manual is to provide extensive information on the Studio component structure and the operation of each component. The components are organized in the following order.

- Audio
- AudioIO
- CommPanel
- Control
- Dynamics
- Environmental Cue
- Highway 3D Service
- Intercom
- IOInterfaces
- Platform
- Host Control
- Radio Components
- Speech

Note: Not all of the features and menu items that appear on your system are described in this manual.

While the components allow you to construct much of the audio simulation and infrastructure for a given application, you must still develop a good portion of additional simulation code to drive the constructed model in sufficient fashion, fully achieving the sound and communications operations of your application.

Each component is listed with a general summary and description, and the remainder of the section is divided into table formats for the inputs, outputs, and internal parameters. For the remainder of this document, each component section is organized into the following table sections:

- Inputs
 - ° Audio Inputs
 - Control Inputs
- Outputs
 - Audio Outputs
 - Control Outputs
- *Internal parameters*: any values that must be set as part of a component configuration that DO NOT have an external connection port.

Note: *Not every component has all the tables listed above; tables may vary depending on the complexity of the component.*

Within each table, the parameters are organized alphabetically for search ability.

1.1 Component viewer

The component viewer provides specific component information and the component values. Each component has two views:

- *Filtered:* displays the most important parameters that must be set.
- Unfiltered: displays every parameter available for that component.

Tab Name	Description
Data	Data Viewer lists the primitives in a tree view. To expand the view, select the arrows to show the variables within a primitive. In some cases, a variable within a primitive contains its own set of variables and can also be expanded. The dotted lines in From and To represent links to the component.
Links	The link inspector tab displays input and output links and details, including Out Source Variable, Destination, Destination Variable , and In Source , Source Variable , and Destination Variable .
Info	This setting displays information about the component.
View/Edit Descrip- tion	This setting allows you to add a description of the component.

Table 1: Component viewer tabs

2.0 Audio components

Mix, filter, or add audio components into highway channels through a feeder connection. The following section details audio components and their internal parameters, including the following:

- AmpMod
- AudioFeed
- AutoDRED
- ComplexPlaysound
- Compressor
- Delay
- Demux
- Envelope
- Filter
- LevelDCapture
- Lockout
- MessageList
- Mixer
- NoiseSource

- PEnvelope
- PFilter
- Playsound
- Pulse
- PulseSequence
- PulseStep
- PulseStream
- RecordReplay
- SimpleMixer
- Sequencer
- VolumeControl
- Vox
- Wave

2.1 AmpMod

Summary: Amplitude Modulator (i.e., **AmpMod**) generates a carrier signal with an amplitude controlled by a modulating signal. This is useful for general warning tones (e.g., Radar Warning Receivers) that require dynamic control. Complex warning tones can be generated when the amplitude modulator is used with **Pulse**.

Description: **AmpMod** provides a signal multiplication capability between two signals, a carrier waveform, and a modulating envelope.

The carrier waveform is the external signal source connected to the carrier input parameter. *CarrierOffset* is an offset value added to the amplitude of the carrier waveform before modulation. If no signal source is connected to *Carrier*, and *CarrierOffset* is 0, **AmpMod** does not generate an output signal. If no signal source is connected to *Carrier*, and *CarrierOffset* is not 0, **AmpMod** uses the offset value as a DC carrier (i.e., offset).

Gain controls the **AmpMod** output's amplitude. When the gain is less than or equal to 0, **AmpMod** does not output a signal.

The modulating signal is the external signal source connected to *ModulationSignal*. Typically, the modulating signal source is a square wave or pulse; however, you may use any signal type. *ModulationOffset* is the offset value added to the amplitude of the modulating signal before the lag filter is applied. As a result, the modulation signal can be offset from zero to allow for control of the modulation depth. The modulation offset should be 1.0 to provide a full depth of modulation from a square or sinusoidal source. This assumes the gain of the originating signal is set to 1.0, in which case it swings between -1.0 and 1.0, hence the need for a 1.0 offset. The **AmpMod** input variable controls whether the modulating signal is applied to the carrier. If not, the signal source is connected to *ModulationSignal*, and the **AmpMod** does not modulate the carrier signal.

FilterFrequency determines the filter constant for the lag filter, which filters the modulating signal. This lag filter softens the edges, which occur when a square wave modulates a sine wave. The filter constant determines the effective slew rate of the modulating signal.

Note: *The lag filter is an a-rate function, not a k-rate function.*

Name	Туре	Default Value	Modifier	Modifier_ default	Range
CarrierSignal	audio	N/A	N/A	N/A	N/A
CarrierOffset	float32	1.0	Multiply (*)	0.0	0.0–Inf
Gain	float32	1.0	Multiply (*)	1.0	0.0–Inf
ModulationSignal	audio	N/A	N/A	N/A	N/A
ModulationOffset	float32	1.0	Multiply (*)	0.0	0.0–1.0
Modulate	Boolean	FALSE	XOR	TRUE	N/A

Table 2, "AmpMod audio inputs" below displays AmpMod audio input variables:

Table 2: AmpMod audio inputs

Table 3, "AmpMod audio output" below displays the AmpMod audio output variable:

Name	Туре	Default Value	Modifier	Modifier_ default	Range
OutSignal	audio	N/A	N/A	N/A	N/A

Table 3: AmpMod audio output

Table 4, "AmpMod internal parameter" below displays the **AmpMod** internal parameter variable:

Name	Туре	Default Value	Modifier	Modifier_ default	Range
FilterFrequency	float32	25.0	N/A	N/A	N/A

2.2 AudioFeed

This component is described in Section 9.0, "Highway 3D Service" on page 159.

2.3 AutoDRED

Summary: AutoDRED conducts a series of five tests to verify the system's speaker setup.

Description: **AutoDRED** starts the first test by sending pink noise to all speakers in the system setup. Test 2 sends a narrowband noise centered at 100 Hz out from each individual speaker in the setup. Test 3 sends a narrowband noise centered at 1,000 Hz from each individual speaker in the setup. Test 4 sends a narrowband noise centered at 10,000 Hz from each individual speaker in the setup. Test 5 plays pink noise from each individual speaker.

If a test fails, *ErrorCode* displays the channel number that failed. If all tests pass, it confirms that all speakers are working properly in the system's setup.

For the initial automated setup procedure, set *TestEnable* and *SetupEnable* to **TRUE**. This action runs the setup tests for every channel. Setup takes approximately two minutes per channel. Setting up to 16 channels takes approximately 32 minutes.

Important: If possible, clear the room or simulator with the speakers during testing. If you must be in the same room during testing, remain still with no movement.

Table 5, "AutoDRED audio input" below lists and describes the AutoDRED audio input variable:

Name	Туре	Default Value	Description
InSignal	audio	N/A	Connects to the AutoDRED's microphone's audio input signal.

 Table 5: AutoDRED audio input

Table 6, "AutoDRED control inputs"	below lists and describes	AutoDRED control input vari-
ables:		

Name	Туре	Default Value	Description
CaseDuration	float32	0.0	The amount of time sounds are played for each test case.
NumChannels	uint8	0	Set this value to the number of speakers in the system setup. Limit is 16 channels.
SetupEnable	Boolean	FALSE	If TRUE , AutoDRED initiates the automated setup procedure. This process may take a few minutes, depending on the number of channels (about two minutes per channel).
Test2Freq	float32	100.00	Sets the center frequency for Test 2.
Test3Freq	float32	1000.00	Sets the center frequency for Test 3.
Test4Freq	float32	7000.00	Sets the center frequency for Test 4.
TestCaseSelect	uint8	0	 Use this with <i>TestEnable</i> to select the test. <i>1</i>: sends pink noise to all speakers. <i>2</i>: sends a narrowband noise centered at 100 Hz to each individual speaker. <i>3</i>: sends a narrowband noise centered at 1,000 Hz to each individual speaker. <i>4</i>: sends a narrowband noise centered at 10,000 Hz to each individual speaker. <i>5</i>: sends pink noise to each individual speaker.
TestEnable	Boolean	FALSE	Set to TRUE to begin Tests 1–5.

Table 6: AutoDRED control inputs

Table 7, "AutoDRED control outputs" below lists and describes **AutoDRED** control output variables:

Name	Туре	Default Value	Description
Channel	uint8	0	Displays the channel number that you are testing.
ErrorCode	uint32	0	Displays the number of the speaker that fails. This number appears until <i>TestEnable</i> is reset.
LevelDifference	float32	0	Decibel difference between the last channel tested and the reference value that was created during the initial setup procedure.
TestCase	uint8	0	Displays the test case that is currently running.
TestRunning	Boolean	FALSE	TRUE indicates that speaker setup or testing is currently in progress.
Time	float32	0.0	Amount of time the test has been running.

Table 7: AutoDRED control outputs

Table 8, "AutoDRED internal parameters" on the next page lists and describes **AutoDRED** internal parameter variables:

Name	Туре	Default Value	Description
BackgroundLevel	float32	0.0	The measured Root Mean Squared level for the background noise test.
FilteredNoiseGain	float32	1.0	Filters the gain for pink noise tests.
GainTable	function	N/A	Choose a TableXY from the Math Plan , which adjusts the audio gain for each individual test. For example, you might boost the low frequency noise volume for a subwoofer test.
LevelTable	function	N/A	Choose a TableXY from the Math Plan . This table should contain the measured signal levels for each test. Copy these values from the /var/t-mp/autodred.dat file following a setup run.
Mode	dred_mode	STOP	Reports the current state of the component. Options include: • Stop • Test • Manual Test • Setup
NoiseGain	int32	0.10	Controls the gain for pink noise tests.

Name	Туре	Default Value	Description
Results1–Results4	float32	0	The outputs of <i>Results1–Results4</i> is the audio level for all speakers at once.
ThresholdTable	function	N/A	Choose a TableXY from the Math Plan . This table contains the failure thresholds for each individual test. Values are in dB.

Table 8: AutoDRED internal parameters

2.3.1 Set up AutoDRED

This procedure assumes a prebuilt **AutoDRED** mode exists. To set up **AutoDRED**, follow these steps:

- 1. Install the layout, and open the AutoDRED model in the load viewer.
- 2. Adjust **AutoDRED** gains (i.e., *NoiseGain* and *FilteredNoiseGain*) down to be careful at first. *NoiseGain* controls the level of the flat pink noise test. *FilteredNoiseGain* controls the levels of the three other noise tests, which involve bandpass filtered pink noise.
- 3. Set *SetupEnable* and *TestEnable* to **TRUE** to do a setup run. You should hear it cycle through four noises on each speaker. Wait for it to finish and set *SetupEnable* and *TestEnable* to **FALSE**.
- 4. SSH into the Telestra server, and go to /var/tmp/autodred.dat, which has a nice summary of setup levels and distances above the noise floor for each test. The goal is for most tests to be >10 dB above the noise floor. This level is not possible on some tests (e.g., high-frequency noise through the subwoofers).
- 5. Adjust *NoiseGain* and *FilteredNoiseGain*, rerun the setup, and reopen /var/tmp/autodred.dat. Wait until most tests reach the 10 dB mark. If one particular test (e.g., Speaker 3, Test 4) should be louder, use *GainTable* to boost or cut the specific volume. Otherwise, do not use *GainTable*.
- 6. When you are satisfied that most tests are 10 dB above the noise floor, create two *TableXYs* in the **MathPlan**. Give the tests unique names (e.g., **DRED_Ref_Levels** and **DRED_Thresholds**).
- 7. Enter the levels from /var/tmp/autodred.dat into the **DRED_Ref_Levels** table. Go to the example tables for how to structure the table. The test number goes along the top, and the speaker number goes down the side.
- 8. Fill in the **DRED_Thresholds** table to have the value of 3 dB in all entries that correspond to tests that were 10 dB or more above the noise floor. For test cases that were less than 10 dB above the noise floor, enter a high threshold (e.g., 100) to make the case a "don't care."

- 9. Select **Notify Telestra Server** in the **Mathplan** window to push the tables to the Telestra server.
- 10. Select the two tables in the **AutoDRED** component, filling in *LevelTable* and *ThresholdTable*.
- 11. Run the test a few times, and observe the level differences on each test. Generally tests should be within 2 dB of the setup run.

Tips

- The 3 dB tolerances are adjustable to be tighter or looser depending on the requirements and what needs to be proved.
- The /var/tmp/autodred.dat file provides easier viewing of all the data. The same signal levels are shown in the component data viewer. Distance above noise floor is only shown in the file.
- The background noise test (Test 5) can be useful, but it should only fail if there is a drastic change in background noise level. In the **MathPlan** tables for levels and thresholds, the background noise test is the first entry in the **5.0** column. To start, set a larger threshold (e.g., 6 dB).

TableXY Function								
Handle: H2_Ref_Levels					🗌 Interpo	olate		
x vs y	1.0	2.0	3.0	4.0	5.0			
1.0	0.018577	0.02034	0.019079	0.018604	0.004785			
2.0	0.017907	0.020958	0.019826	0.01654	0.0			
3.0	0.021882	0.026971	0.026521	0.022479	0.0			
4.0	0.019454	0.022713	0.021153	0.018065	0.0			
5.0	0.022562	0.02875	0.028618	0.021359	0.0			
6.0	0.02385	0.034367	0.029084	0.01851	0.0			
7.0	0.019038	0.025189	0.018624	0.019144	0.0			
8.0	0.015582	0.019067	0.019626	0.015677	0.0			
9.0	0.014917	0.014911	0.027936	0.006797	0.0			
10.0	0.019935	0.019626	0.029523	0.007599	0.0			
11.0	0.022015	0.025077	0.024745	0.022565	0.0			
12.0	0.021411	0.041415	0.006172	0.004742	0.0			
13.0	0.014255	0.021929	0.005784	0.004764	0.0			
						X Ca	incel	🖑 ОК

Figure 1: AutoDRED RefLevel table

Populate this **TableXY Function** window with the measured Root Mean Squared signal level for each speaker and test. Copy these levels from the /var/tmp/autodred.dat file after a setup run.

TableXY Function								×
Handle:	dle: H2_Thresholds			🗌 Interpo	olate			
x vs y	1.0	2.0	3.0	4.0	5.0			
1.0	3	3	3	3	100.0			
2.0	3	3	3	3				
3.0	3	3	3	3				
4.0	3	3	3	3				
5.0	3	3	3	3				
6.0	3	3	3	3				
7.0	3	3	3	3				
8.0	3	3	3	3				
9.0	3	3	3	3				
10.0	3	3	3	3				
11.0	3	3	3	3				
12.0	3	3	3	3				
13.0	3	3	3	3				
						🗙 Ca	incel	🖑 ок

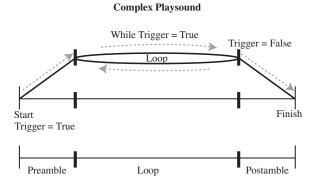
Figure 2: AutoDRED threshold table

Enter failure thresholds in dB into this **TableXY Function** for each speaker and test. The **AutoDRED** test fails if one of the measured signal levels differs from the reference levels by more than the specified failure threshold.

2.4 ComplexPlaysound

Summary: ComplexPlaysound plays digitally encoded sound files with dynamically varying elements. The elements occur in three sequences a ramp-up sound, a loop file, and a rundown sound. This component is similar to the MBV sound library complex loop, except a separate component provides this functionality.

1	- - - - - -	ì
	=	
	—	


Note: Set *Playsounds* in *ComplexPlaysound* to buffer for proper operation. In the *Sound Library*, set the sound buffer to *TRUE*.

Description: ComplexPlaysound starts playing the preamble sound file when the trigger is **TRUE**. After playing the preamble in its entirety, the loop sound file plays. The loop sound file continues to play in a loop until the trigger becomes **FALSE**. At this point, the postamble sound file is played.

When **TRUE**, *ProportionPostamblePlay* allows the component to interrupt the preamble and proportionally play the postamble. The postamble sound's starting point depends on how much of the preamble sound has been played. When **FALSE**, it plays the entire postamble sound regardless of the preamble sound's interruption point.

Trigger and *Pause* control playback. In**ComplexPlaysound**, set *LibraryID*. You can set *GroupID* in **ComplexPlaysound** or modify it using an external control. The indices (e.g., *Preamble, Postamble, Loopsound*) determine which sound files are used within the specified library and group. A group value of 0 indicates that the sound file is not in a group but directly under the library.

The output signal can connect to any component that accepts audio as an input (e.g., Mixer):

For example, when *Trigger* is **TRUE**, *Preamble* plays to the 60 percent position. When *Trigger* is **FALSE**, *Postamble* plays to the 40 percent position.

Proportional Postamble Play

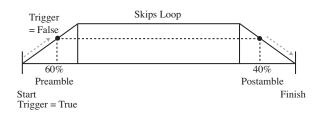


Table 9, "ComplexPlaysound audio inputs" on the next page lists and describes **Com-plexPlaysound** audio input variables:

Name	Туре	Default Value	Description
LoopSoundIdx	playsound_ sound	0	The value of the loop file index. This index selects a file from within a group. If it doesn't find a match, then it doesn't play a file. If no external variable is connected to the index, the offset is used.
PostambleSoundIdx	playsound_ sound	0	The value of the postamble file index. This index selects a file from within a group. If it doesn't find a match, then it doesn't play a file. If no external variable is connected to Index, the offset is used.

Name	Туре	Default Value	Description
PreambleSoundIdx	playsound_ sound	0	The value of the preamble file index to be played. This index is used to select a file from within a group. If no matches are found then no file is played. If no external variable is connected to the index, the off- set is used.
Trigger	Boolean	FALSE	The trigger state; TRUE starts playing the sound file.

Table 9: ComplexPlaysound audio inputs

Table 10, "ComplexPlaysound audio output" below lists and describes the **ComplexPlaysound** audio output variable:

Name	Туре	Default Value	Description
Out	audio	N/A	The audio output signal from Com- plexPlaysound . This signal can connect to the audio input of another component.

Table 10: ComplexPlaysound audio output

Table 11, "ComplexPlaysound control inputs" on the facing page lists and describes **ComplexPlaysound** control input variables:

Name	Туре	Default Value	Description
GroupID	playsound_ group	0	 The value of <i>GroupID</i>. <i>GroupID</i> chooses a group from within a sound library. <i>Modifier</i>: add (+) <i>Modifier_default</i>: 0 <i>Range</i>: 0-255
OutGain	float32	1.0	Applies amplitude gain control to the output signal. If no external con- trol is connected to <i>OutGain</i> , the scale factor is the <i>OutGain</i> value.

Name	Туре	Default Value	Description
Pause	Boolean	FALSE	The pause state; TRUE freezes the sound file playing, and FALSE allows the sound file to continue from the current file position. If <i>Pause</i> isn't connected to an external variable, the modifier is the local value. • <i>Modifier</i> : XOR • <i>Modifier_default</i> : FALSE
ProportionPostamblePlay	Boolean	FALSE	Offsets the starting position of the postamble sound file relative to the current position of the preamble sound file. Go to the diagram for an example.

Table 11: ComplexPlaysound control inputs

Table 12, "ComplexPlaysound internal parameter" below lists and describes the **ComplexPlaysound** internal parameter variable:

Name	Туре	Default Value	Description
LibraryID	playsound_ library	<select></select>	The <i>LibraryID</i> selects the library, which includes sound files you may choose from.

Table 12: ComplexPlaysound internal parameter

2.5 Compressor

Summary: **Compressor** modifies the dynamic range of an audio signal to provide a form of automatic volume control. This component includes the **Gate**, **Expander**, **Compressor**, and **Limiter** stages.

Description:

Compressor consists of four stages (i.e., subcomponents):

- 1. *Gate:* ensures that no audio signal below a certain threshold level is passed to the next stage. This stage establishes a minimum level for a signal to be processed.
- 2. *Expander*: reduces or increases the level of an audio signal if it is below a certain threshold. This stage acts as an automatic level control for a microphone.

- 3. *Compressor:* reduces the level of and audio signal if it is above a certain threshold. This stage prevents an input stage from over-driving or softens loud sections of audio.
- 4. *Limiter:* a Compressor with an infinite ratio and instant attack so that the output signal is a scaled version of the input signal with the highest peak level reaching the threshold. This stage typically prevents over-driving amplifiers and speakers.

Figure 3, "Compressor stages" below shows Compressor's process:

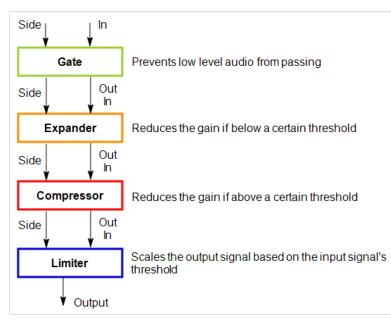


Figure 3: Compressor stages

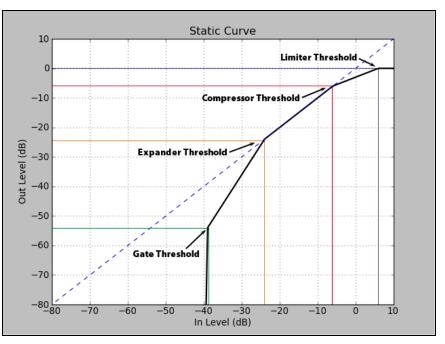


Figure 4, "Compressor static curve" below shows **Compressor's** static curve:

Figure 5, "Compressor input" below shows Compressor's input threshold:

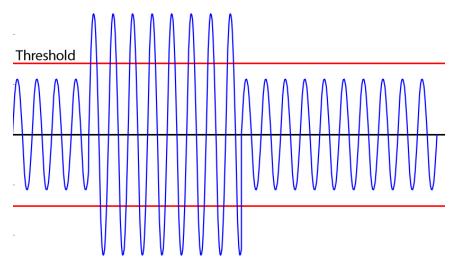


Figure 5: Compressor input

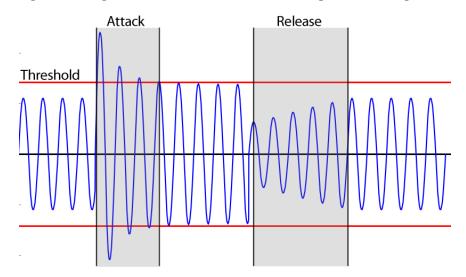


Figure 6, "Compressor output threshold" below shows **Compressor's** output threshold:

Figure 6: Compressor output threshold

Table 13, "Compressor audio inputs and outputs" below lists and describes **Compressor** audio inputs and outputs:

Name	Туре	Default Value	Description
Audio Inputs			
InSignal	audio	N/A	Input signal to Compressor .
SideIn	audio	N/A	Side-chain input to Compressor .
Audio Outputs	i -		
OutSignal	audio	N/A	The signal after Compressor has processed it.

Table 13: Compressor audio inputs and outputs

Table 14, "Gate control input"	below lists and describes the	Gate stage's control input vari-
ables:		

Name	Туре	Default Value	Description
GateEnable	Boolean	FALSE	If TRUE , the Gate stage is enabled and processes the audio signal. If FALSE , the input audio is passed unaltered to the next stage.
GateSideEnable	Boolean	FALSE	When TRUE , allows the amplitude of an audio signal at <i>SideIn</i> to control Gate , which acts on the audio signal at <i>InSignal</i> .
GateThreshold	float32	1.0	 The threshold level in dB; when the input signal amplitude falls below this threshold, Gate prevents the signal from passing. <i>Modifier:</i> -60.0
GateRelease	float32	1.0	Release time in milliseconds of Gate . The longer this time is, the longer Gate remains open after the input signal falls below the threshold.
GateHold	float32	1.0	• <i>Modifier:</i> 100.00 Once the input signal amplitude falls below the threshold, the input signal amplitude cannot trig- ger it again until after this time in ms elapses.
			• Modifier: 200.00
GateOutGain	float32	1.0	The gain of the output audio from Gate .

Table 14: Gate control input

Table 15, "Expander control inputs" below lists and describes the **Expander** stage's control inputs:

Name	Туре	Default Value	Description
ExEnable	Boolean	FALSE	If TRUE , the expander stage is enabled and pro- cesses the audio signal. If FALSE , the input audio passes unaltered to the next stage.
ExSideEnable	Boolean	FALSE	When TRUE , allows the amplitude of an audio signal at <i>SideIn</i> to control the Expander stage, which acts on the audio signal at <i>InSignal</i> .
ExThreshold	float32	1.0	Expands any signal content below this level. Values are in dB. • <i>Modifier:</i> -50.00
ExRatio	float32	1.0	The input-to-output ratio applied once the input sig- nal level falls below the Expander threshold. For example, if the input signal is below the threshold by 1 dB, a ratio of 0.5 (1:2) produces an output under the threshold by 2 dB. Setting the ratio above 1 makes the Expander an upward Expander . Usable ranges for upward Expanders are not much greater than 1 since they tend to boost signals dramatically. • <i>Modifier</i> : 0.5
ExRelease	float32	1.0	 Expander's release time in milliseconds. Greater values delay Expander's response to falling signal levels. Modifier: 100.00
ExAttack	float32	1.0	 Expander's attack time in milliseconds. Greater values delay Expander's response to rising signal levels. Modifier: 25.0
ExOutGain	float32	1.0	The output audio gain from Expander .

Table 15: Expander control inputs

Table 16, "Compressor control inputs" b	elow lists and describes the Compressor stage's con-
trol inputs:	

Name	Туре	Default Value	Description
CompEnable	Boolean	TRUE	If TRUE , the Compressor stage is enabled and processes the audio signal. If FALSE , the input audio passes unaltered to the next stage.
CompAttack	float32	1.0	 The amount of time it takes for gain reduction to take full effect when the input level exceeds the threshold. Values are in ms. <i>Modifier:</i> 50.0
CompSideEnable	Boolean	FALSE	When TRUE , allows the amplitude of an audio signal at <i>SideIn</i> to control the Compressor stage, which acts on a signal at <i>InSignal</i> .
CompRatio	float32	1.0	The input-to-output ratio applied once the input signal amplitude rises above the Compressor stage's threshold. For example, when the value is 4.0 (i.e., 4:1), an input signal that is 4 dB above the threshold yields an output signal that only 1 dB above the threshold.
CompRelease	float32	1.0	 <i>Modifier:</i> 4.0 The amount of time it takes for gain reduction to dissipate when the input level falls below the threshold. Values are in ms. <i>Modifier:</i> 500.00
CompThreshold	float32	1.0	Any signal content above this level is compressed. Values are in dB.<i>Modifier:</i> -6.0
CompOutGain	float32	1.0	Sets the linear gain factor for the output of the Compressor . This gain defaults to 1 if the Compressor is not enabled. The gain of the output audio from the Compressor stage.

Table 16: Compressor control inputs

Table 17, "Limiter control inputs" below lists and describes the Limiter stage's control inputs:

Name	Туре	Default Value	Description
LimAllowClip	Boolean	FALSE	Enables a simple Limiter algorithm that clips the signal if it breaks the specified threshold.
LimEnable	Boolean	FALSE	If TRUE , the Limiter stage is enabled and pro- cesses the audio signal. If FALSE , the input audio is passed unaltered.
LimThreshold	float32	1.0	The specified level that the signal is limited to. Values are in dB.<i>Modifier:</i> 0.0
LimSideEnable	Boolean	FALSE	When TRUE , allows the amplitude of an audio signal at <i>SideIn</i> to control the Limiter , which acts on the audio signal at <i>InSignal</i> .
OutGain	float32	1.0	Sets the gain factor for the output of the Limiter stage. This gain is applied even if <i>LimEnable</i> is FALSE .
LimRelease	float32	100.0	The release time (in milliseconds) of the Limiter stage. The longer this time, the longer it takes for the effect of Limiter to dissipate after the input signal level falls below the threshold.

Table 17: Limiter control inputs

Table 18, "Compressor internal parameters" below lists and describes the **Compressor** stage's internal parameters:

Name	Туре	Default Value	Description
CompOutSignal	audio	N/A	The signal after the Compressor stage processes it.
GateOutSignal	audio	N/A	The signal after the Gate stage processes it.
ExOutSignal	audio	N/A	The signal after the Expander stage processes it.

Table 18: Compresso	r internal parameters
---------------------	-----------------------

2.6 Delay

Summary: Delays the input audio.

Description: **Delay** postpones audio by the specified number of frames (1.33 ms) up to one second.

Table 19, "Delay audio input and output" below lists and describes **Delay** audio input and output variables:

Name	Туре	Default Value	Description
Audio Input			
InSignal	audio	N/A	The delayed audio signal's input.
Audio Output			
OutSignal	audio	N/A	The delayed audio signal's output.

Table 19: Delay audio input and output

Table 20, "Delay control inputs" below lists and describes **Delay** control input variables:

Name	Туре	Default Value	Description
DelayFrames	int32	0.0	The number of frames to delay the input audio. Each frame equals 1.33 ms. <i>Important:</i> Editing DelayFrames while it is pro- cessing audio may cause audible popping sounds.
Enable	Boolean	FALSE	When TRUE , the audio signal is delayed.
OutGain	float32	1.0	The gain of the output audio.

Table 20: Delay control inputs

Table 21, "Delay internal parameter" below describes the **Delay** internal parameter variable:

Name	Туре	Default Value	Description
DelayMS	float32	0.0	The frame delay expressed in milliseconds. <i>DelayFrames</i> × 1.33 ms

 Table 21: Delay internal parameter

2.7 Demux

Summary: Demultiplexer (i.e., **Demux**) takes an input signal and divides it among 16 outputs, as specified by the control.

Description: **Demux** is made up of one signal input, one control input, and 16 signal outputs. **Demux** is commonly used for environmental cue applications where it is necessary to test different speakers in the simulator.

Table 22, "Demux variables" below describes **Demux's** variables:

Name	Туре	Default Value	Description
InSignal	audio	N/A	Provides a connection to an audio signal that is to be distributed to the signal outputs.

Table 22: Demux variables

Table 23, "Demux audio outputs" below describes **Demux** audio outputs:

Name	Туре	Default Value	Description
SignalOut00– SignalOut15	audio	N/A	<i>SignalOut00–SignalOut15</i> are the audio output signals from Demux . The audio signal can be routed out to one out signal or up to 16 out signals, as designated by the control input.

Table 23: Demux audio outputs

Table 24, "Demux control input" below describes the **Demux** control input:

Name	Туре	Default Value	Description
Control	int32	65535	Specifies which of the 16 <i>SignalOut</i> variables receive the audio signal. The default of 65535 sends the audio signal to all 16 outputs. The input value is bin- ary weighted.

Table 24: Demux control input

2.8 Envelope

Summary: Envelope applies a filter to an input signal based on three math functions.

Description: Envelope applies a type of filtering to the input signal. The type of filtering may be lowpass, bandpass, or highpass. MathFunction defines the input signal's frequency, gain, and QFactor. Figure 7, "Audio Envelope workflow" below shows Envelope's workflow:

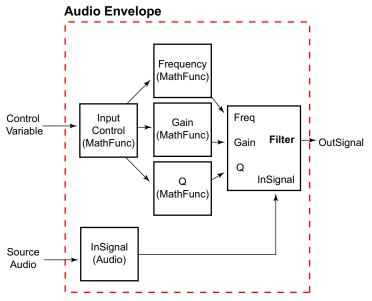


Figure 7: Audio Envelope workflow

Table 25, "Envelope audio input and output" below lists and describes **Envelope** audio input and output variables:

Name	Туре	Default Value	Description	
Audio Input				
InSignal	audio	N/A	Provides a connection to an audio signal for filtering.	
Audio Output				
OutSignal	audio	N/A	The output audio signal after it is filtered.	

 Table 25: Envelope audio input and output

Table 26, "Envelope control inputs" below lists and describes **Envelope** control input variables:

Name	Туре	Default Value	Description
Control	float32	1.0	Determines what the input is going to be based on the MathFunctions .
Enable	Boolean	FALSE	When TRUE , the filter is turned on.

Table 26: Envelope control inputs

Table 27, "Envelope internal parameters" below lists and describes **Envelope** internal parameter variables:

Name	Туре	Default Value	Description
FilterType	filter_type2	LowPass	Value used to select the filter type.
FreqFunction	function	<select></select>	The name of the MathFunction that sets the filter's center frequency.
GainFunction	function	<select></select>	The name of the MathFunction that sets the filter's gain.
QFunction	function	<select></select>	The name of the MathFunction that sets the filter's Q.

Table 27: Envelope internal parameters

2.9 Filter

Summary: Filter applies a filter to an input signal.

Description: Filter applies lowpass, bandpass, or highpass filters to an input signal. Use input variables elsewhere in the model or from the host interface to control the Filter quality factor, roll-off frequency, and gain. Pass the input signal audio to the filter only if the derived output gain is greater than 0.0.

The following parameters control Filter:

- Enable
- FilterType
- Frequency
- QFactor

Enable is specified by an externally controlled variable and an XOR logic gate control. XOR logic is applied to the external variable and the gate control to derive a final value for *Enable*. If no external variable is connected, the value of the logic gate control becomes *Enable*. If *Enable* is **FALSE**, no filtering is applied to the input signal.

FilterType determines the type of **Filter** applied to the input signal (e.g., **Off**, **Lowpass**, **High-pass**, or **Bandpass**). If *FilterType* is turned off, no filtering is applied to the input signal. *Fre-quency* provides the roll-off frequency of the **Filter** in Hertz. The meaning of the frequency depends on the **Filter** type:

- Filter type frequency meaning
- Off ignored
- Lowpass upper bound frequency
- Highpass lower bound frequency
- Bandpass center frequency with bandwidth controlled by *QFactor*

QFactor is the **Filter** quality factor, which effectively determines the **Filter** roll-off for lowpass and high pass **Filters** and the **Filter** bandwidth for bandpass **Filters**. *QFactor* is inversely proportional to the **Filter** roll-off or bandwidth.

The **Filter** parameters derive the filter coefficients for a two-pole infinite input response (IIR) filter. If *QFactor* is 0 or less, use a low value above 0 for the k calculation. If the **Filter** type is off, the filter output signal is the input signal.

An amplitude gain control is applied to the **Filter** output. This output gain control consists of a connection to an external control variable and a scale factor. The value of the external variable is multiplied by the scale factor to drive the output gain. If no external variable is connected, the value for the scale factor becomes the output gain.

Filter output audio is only active if the following conditions are TRUE:

- 1. The **Filter** output is active.
- 2. The derived output gain (i.e., *External Variable* × *Scale Factor*) is greater than 0.0.

Table 28, "Filter audio input and output" below lists and describes **Filter** audio input and output variables:

Name	Туре	Default Value	Description	
Audio Input				
InSignal	audio	N/A	The signal connection used as an input to the filter.	
Audio Output				
OutSignal	audio	N/A	The output signal from Filter .	

Table 28: Filter aud	o input and output
----------------------	--------------------

Name	Туре	Default Value	Description
Enable	ble Boolean FALSE		Determines if the input signal is filtered. If no external control is connected to <i>Enable</i> , the x/modifier is the control value.
			 Modifier. XOR Modifier_default: TRUE
Frequency	float32	1.0	 Provides the roll-off frequency of the Filter. For low-pass filters, <i>Frequency</i> acts as an upper bound frequency. For highpass filters, <i>Frequency</i> acts as a lower bound frequency. For bandpass, <i>Frequency</i> acts as a center frequency, and the filter bandwidth is determined by <i>QFactor</i>. If no external control is connected to <i>Frequency</i>, the scale factor is the <i>Frequency</i> value. The acceptable range is 0 to half of the model sample rate. <i>Modifier</i>: multiply (*)
			Modifier_default: 2000.0
OutGain	float32 1.0		Applies amplitude gain control to the output signal. If no external control is connected to <i>OutGain</i> , the scale factor is the <i>OutGain</i> value.
			 <i>Modifier</i>. multiply (*) <i>Modifier_default</i>: 1.0
QFactor	float32	1.0	 The Filter quality factor, which effectively determines the Filter roll-off for lowpass and highpass Filters and the Filter bandwidth for bandpass Filters. <i>QFactor</i> is inversely proportional to the Filter roll-off or bandwidth. If the input is not connected, the scale factor is used as the <i>QFactor</i> value. <i>Modifier</i>: multiply (*) <i>Modifier default</i>: 0.707100

Table 29: Filter control inputs

Name	Туре	Default Value	Description
FilterType	filter_type2	LowPass	Determines the type of filter applied to the input signal:
			 LowPass HighPass BandPass LowPassQ BandPassQ HighPassQ Notch If no filtering is desired, set <i>FilterType</i> to OFF.

Table 30, "Filter internal parameter" below shows the Filter internal parameter variable:

Table 30: Filter internal parameter

2.10 Lockout

Summary: Lockout allows sharing of a limited number of assets on a "first-come, first-served" basis.

Description: This component routes input audio streams (i.e., operators) to output audio streams (i.e., assets) based on when each operator triggers his or her press-to-talk (PTT) device. If the number of input streams is greater than the available outputs, operators who press the PTT button last are unable to access an output and are locked out. **Lockout** accepts up to eight separate operator inputs. Operators are assigned to the output assets based on when they PTT. The first operator to PTT gains access to Asset 1, the second to Asset 2, etc. If the number of available assets is exceeded, the next operator is locked out and unable to gain access to any of the assets.

Once an operator releases his or her PTT, the asset allocated to him or her is available to all operators once the release time elapses. The component is similar to an office phone system, whereby multiple outside lines are accessible by many people, but the number of simultaneous calls is limited.

Table 31, "Lockout audio input" below describes the Lockout audio input variable:

Name	Туре	Default Value	Description
Operator1_Audio– Operator8_Audio	audio	N/A	Input audio stream that corresponds to the PTT of the same name. Operator audio is routed to asset audio based on when the PTT is pressed. The audio stream is always routed to the lowest numbered asset that is available.

Name	Туре	Default Value	Description
Asset1_Audio– Asset8_Audio	audio	N/A	Operator audio is routed out of the component once a PTT is pressed. When a PTT is TRUE , the audio is always routed to the lowest available asset.

Table 32, "Lockout audio output" below describes the Lockout audio output variable:

Table 32: Lockout audio output

Table 33, "Lockout control inputs" below lists and describes Lockout control input variables:

Name	Туре	Default Value	Description
AssetMask	byte	255	Controls which assets the operator can use; the least significant bit corresponds to <i>Asset1</i> , and the most significant corresponds to <i>Asset8</i> . For example, an <i>AssetMask</i> of 15 would make <i>Asset1</i> , <i>Asset2</i> , <i>Asset3</i> , and <i>Asset4</i> available for the operators to use.
Operator1_PTT– Operator8_PTT	Boolean	FALSE	The operator PTT acts as a trigger for each of the eight input streams. A value of TRUE is used when an operator is trying to gain access to an asset. The operator PTT can also be used without the operator audio.
OperatorMask	byte	255	Controls which operators can be routed to the asset streams with the least significant bit corresponding to Operator1, and the most significant corresponding to Operator8. For example, an <i>OperatorMask</i> of 31 makes Operators 1, 2, 3, 4, and 5 available for use within Lockout .
ReleaseDelay	float32	1.0	The time, in seconds, that Lockout waits after a PTT is FALSE before allowing another operator to access an asset.

Table 33: Lockout control inputs

Table 34, "Lockout control outputs" below lists and describes **Lockout** control output variables:

Name	Туре	Default Value	Description
Asset1_Operator– Asset8_Operator	uint8	0	Reports which input audio stream (oper- ator) is assigned to the corresponding out- put (asset). For example, if <i>Asset1_</i> <i>Operator</i> is equal to 4, that indicates that the audio from <i>Operator4_Audio</i> is being routed to <i>Asset1_Audio</i> .
OperatorAssignedMask	byte	0	Reports if an operator is currently assigned to an asset. For example, a value of 3 indicates that <i>Operator1</i> and <i>Oper-</i> <i>ator2</i> are both routed to one of the asset outputs.

Table 34: Lockout control outputs

2.11 LevelDCapture

Summary: LevelDCapture records audio for Level D compliance testing. The audio recorded by this component can be compared to the reference audio, in real time with the scope or offline with the spectral analysis capability accessible through the Telestra web interface.

Description: To record audio using **LevelDCapture**, link the record audio coming in through the ACU2 to **LevelDCapture**. In the sound library, add the aircraft reference recordings and set the path value and index number. In **LevelDCapture**, set the test number to match the file's index number, this selects the reference file to run with the test recordings. Record the audio. The recording then goes to a file on the Telestra server. The file number resembles library000_groupyyyy_index00X, where yyyyy represents the Level D recording file number, and X represents the test number. Host control can direct the test number and the start variable.

In LevelDCapture, do the following:

- 1. Choose a library and group object (these are set in the Sound Library)
- 2. Set the ACU2 gain level to match the level of the reference recording.
- 3. Add the table function to calculate the gain level with the calibration number. This is the number calculated during calibration of the ACU2 with the microphone.

- 4. Set X to the test case number and f(x) to the calibration number. This value is sent to the ACU2.
- 5. Set the *RecordLength* function for each test case to match the amount of time the file was recorded.
- 6. Set the maximum record time.

After recording the audio, open the Telestra web interface and go to **Spectral Analysis**. Choose a wave set that contains the reference files, and the Telestra web interface automatically links the reference file to the recorded file. Select the box to compare the files and/or create a difference plot to show the margin of the difference. Select **Start Spectral Analysis**, and the Telestra web interface generates a PDF file of the results.

Table 35, "LevelDCapture audio inputs and outputs" below lists and describes LevelDCapture audio input and output variables:

Name	Туре	Default Value	Description
Audio Input			
RecAudio	audio	N/A	The audio that typically comes in from a micro- phone linked to an ACU2. The audio is recor- ded; similar to RecordReplay .
Audio Output			
PSAudioOut	audio	N/A	The reference file audio for the specified test number.

 Table 35: LevelDCapture audio inputs and outputs

Table 36, "LevelDCapture control inputs" below lists and describes **LevelDCapture** control input variables:

Name	Туре	Default Value	Description
ACUGain	function	<select></select>	Insert a table function containing the ACU2 gain corresponding to each test number.
RefAudio	<select></select>	0	The reference audio for comparison. <i>Playsound_LibraryID</i> selects the library from the sound library containing the reference audio file to be played.
	playsound_ group	0	<i>Playsound_GroupID</i> selects a group from the sound library containing the reference audio file to be played.
	playsound_ sound	0	<i>Playsound_SoundID</i> selects a sound file from the sound library. <i>Note: Similar to Playsound</i> .
Start	Boolean	FALSE	Triggers playback of the reference file and recording of <i>RecAudio</i> .
TestNumber	uint16	0	Drives the index number of the reference file and the record file. Use one test number per test case.

Table 36: LevelDCapture control inputs

Table 37, "LevelDCapture control outputs" below lists and describes LevelDCapture control output variables:

Name	Туре	Default Value	Description
ACUGainResult	float32	1.0	The gain applied to the ACU2 input audio. Links to ACU2channel .
RecState	player_state	STOPPED	Displays the RECORD state of LevelDCap- ture . When START becomes TRUE , it changes from STOPPED to RECORDING .

Table 37: LevelDCapture control outputs

Table 38, "LevelDCapture internal parameters" below lists and describes the LevelDCapture internal parameter variable:

Name	Туре	Default Value	Description
RecordLength			
Function	function	<select></select>	A table function that contains the record time corresponding to the current test number.
Result	float32	0.0	The length of the recording.
Max	uint32	120	Set the maximum record length in seconds.

Table 38: LevelDCapture internal parameters

2.12 MessageList

Summary: Plays through a list of sound files and sequences ATIS or warning messages.

Description: MessageList is similar to Playsound but accepts an array of sound indices to play. You can set the sound indices locally or drive them with a host computer. Sounds play sequentially. The next sound starts immediately after the current sound stops.

Table 39, "MessageList audio outputs" below lists and describes **MessageList** audio output variables:

Name	Туре	Default Value	Description
OutSignal	audio	N/A	The output signal from the component.
RepeatCount	uint16	0	This number increments each time the same index plays in a row.

Table 39: MessageList audio outputs

Table 40, "MessageList control inputs" below lists and describes **MessageList** control input variables:

Name	Туре	Default Value	Description
LibraryID	playsound_ library	<select></select>	Sound library selection from layout's repository.
GroupIndex	playsound_ group	0	Selects a group from within the sound library.
SoundIndices	message	[0,0,00]	Array of sound indices to be played (up to 256).
Trigger	Boolean	FALSE	Trigger state; TRUE plays MessageList.
Reset	Boolean	FALSE	When TRUE , MessageList stops playing. When FALSE , MessageList resumes playing at the first sound index.
Pause	Boolean	FALSE	TRUE pauses playback of the current sound. When FALSE , play continues from the current file location.
Playall	Boolean	FALSE	Determines MessageList behavior when not triggered. TRUE forces the entire list to play; FALSE stops the MessageList .
Continuous	Boolean	FALSE	Determines MessageList behavior when <i>Trigger</i> is TRUE and it reaches the end of the list. If TRUE , MessageList loops to the beginning and continues playing. If FALSE , MessageList stops.
OutGain	float32	1.0	Applies the amplitude gain control to the output sig- nal. If an external control is not connected, the scale factor equals the gain value.

Table 40: MessageList control inputs

Table 41, "MessageList control output" below lists and describes the **MessageList** control output variable:

Name	Туре	Default Value	Description
CurrentSound	playsound_ sound	0	Outputs the currently playing sound index.

Table 41: MessageList	t control output
-----------------------	------------------

Table 42, "MessageList internal parameter" below lists and describes the **MessageList** internal parameter variable:

Name	Туре	Default Value	Description
Delay	float32	0	The length of time (in seconds) to wait before loop- ing back to the beginning of the list when in <i>Continuous</i> mode.

Table 42: M	lessageList	internal	parameter
-------------	-------------	----------	-----------

2.13 Mixer

Summary: **Mixer** provides controlled mixing of up to eight signals into a single, composite signal. **Mixer** determines which of the eight signals to mix with both individual and overall gain control. A ninth signal is always mixed into the output signal and can cascade multiple **Mixers** together.

Description: **Mixer** mixes up to nine signal sources into a single, composite output stream. *Control* mixes the first eight signals, determining which signal(s) to include in the output. *Control* is a single byte in which each bit controls the switch state of a signal. If a given bit is set, the signal corresponding to that bit is added to the **Mixer** output. If present, the ninth signal is always added to the **Mixer** output, regardless of *Control*'s value.

Each signal source has its own amplitude gain control. Each signal gain control connects to an external, controlled variable and a scale factor. The value of the external variable is multiplied by the scale factor to derive the signal gain. If no external variable is connected, the value of the scale factor becomes the signal gain.

The amplitude of the final **Mixer** output is controlled by the output gain control. Like the signal gains, the output gain is an external variable multiplied by a scale factor.

The Mixer output audio is only active if all of the following conditions are TRUE:

- 1. At least one if the signal sources (Signal1-Signal8 or InSignal) is active.
- 2. The derived amplitude gain(s) (*External Variable* \times *Scale Factor*) for the active signal source(s) is greater than 0.0.
- 3. The bit in *Control* corresponding to the active signal source must be set. This condition does not apply to *InSignal* because it is not affected by *Control*.
- 4. The final **Mixer** output gain control is greater than 0.0.

Table 43, "Mixer audio inputs and outputs" below lists and describes **Mixer** audio input and output variables:

Name	Туре	Default Value	Description		
Audio Inputs	Audio Inputs				
InSignal	audio	N/A	Additional signal added to output of Mixer ; independent of the control variable. Allows multiple Mixers to cascade together, mixing the audio of more than eight signals.		
Signal1–Sig- nal8	audio	N/A	Eight signals mixed into composite output according to control selectors and gain values.		
Audio Outputs					
OutSignal	audio	N/A	Composite output from Mixer .		

Table 44, "Mixer control inputs" on the next page lists and describes **Mixer** control input variables:

Name	Туре	Default Value	Description
Control	byte	255	 Switches eight signals on or off. Each bit in the control byte enables one of eight signals. When the least significant bit (i.e., Bit 0) is 1, <i>Signal1</i> is added to the Mixer output. Each bit in the sequence controls remaining signals. <i>Signal8's</i> control is the most significant bit (i.e., Bit 7). If no external variable is connected, <i>Control</i> uses the modifier's value. <i>Modifier</i>: and (&) <i>Modifier_default</i>: 255 <i>Range</i>: 0-255
InSig_Gain	float32	1.0	 The amplitude gain control for <i>InSignal</i>. If no external variable is connected, <i>InSig_Gain</i> uses the scalar's value. <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 1.0

Name	Туре	Default Value	Description
Sig1_Gain– Sig8_Gain	float32	1.0	 Amplitude gain control for signals 1–8. If no external variable is connected, signal gain uses scalar's value. <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 1.0
Out_Gain	float32	1.0	Amplitude gain control for the final Mixer output. If no external variable is connected, <i>Out_Gain</i> uses the scalar's value.
			 <i>Modifier</i>. multiply (*) <i>Modifier_Default</i>: 1.0

Table 44: Mixer control inputs

2.14 NoiseSource

Summary: **NoiseSource** generates a filtered white, pink, or brown noise signal. The type of filtering applied may be lowpass, bandpass, or highpass. The filter quality factor, roll-off frequency, and gain can be controlled by input variables from elsewhere in the model or from the host interface. The noise signal is an internal pseudo-random noise source, providing an improved noise source that are easier to tune.

Description: This component consists of a signal source and a filter. The source signal on which the filter acts is white Gaussian, pink, or brown noise. The noise signal is only active if the derived *OutGain* is greater than 0.0.

The following parameters control the filter:

- *FilterEnable*: specified by an externally controlled variable and an exclusive-OR (XOR) logic gate control. XOR logic is applied to the external variable value and the gate control to derive a final value for *FilterEnable*. If no external variable is connected, the value of the logic gate control equals *FilterEnable*. If *FilterEnable* is **FALSE**, no filtering is applied to the noise signal.
- *FilterType*: determines the type of filter applied to the input signal (e.g., **Off**, **Lowpass**, **Highpass**, or **Bandpass**). If **Type** is **Off**, no filtering is applied to the noise. *FilterFrequency* (in Hertz) provides the roll-off frequency or the center frequency of the filter, depending the selected filter's type.
- *FilterFrequency*: sets either the roll-off frequency or center frequency of the filter depending on the type of the filter selected:
 - Off: Ignored
 - Lowpass: upper bound frequency

- **Highpass:** lower bound frequency
- **Bandpass:** center frequency with bandwidth controlled by *FilterQFactor*
- *FilterQFactor*: the filter quality factor, which determines the filter roll-off for lowpass and highpass filters and the filter bandwidth for bandpass filters. *FilterQFactor* is inversely proportional to the filter roll-off or bandwidth. These parameters drive the filter coefficients for a two-pole infinite impulse response (IIR) filter.

If *FilterQFactor* is 0 or less, use a very low, nonzero value for the k calculation. The output from the filter is only active if the noise source is active. If *FilterType* is **Off**, the filter output signal is the raw noise signal.

• *OutGain*: an amplitude gain control is applied to the filter output. This output gain control consists of a connection to an external controlled variable and a scale factor. The value of the external variable is multiplied by the scale factor to derive the output gain. If no external variable is connected, the value for the scale factor becomes the output gain. **NoiseSource** output audio is only active if the output from the filter is active, and the derived output gain (*External Variable × Scale Factor*) is greater than 0.0.

Table 45, "NoiseSource audio output" below lists and describes the **NoiseSource** audio output variable:

Name	Туре	Default Value	Description
OutSignal	audio	N/A	Filtered audio signal. If the filter type is OFF , it does not produce audio.

Table 45: NoiseSource audio output

Table 46, "NoiseSource control inputs" on the next page lists and describes **NoiseSource** control input variables:

Туре	Default Value	Description
Boolean	FALSE	 Determines if the noise signal is filtered. If no external control is connected to <i>FilterEnable</i>, the XOR modifier is the <i>FilterEnable</i> value. <i>Modifier</i>: XOR
		Value

Name	Туре	Default Value	Description
FilterFrequency	float32	1.0	 <i>FilterFrequency</i> in Hertz provides roll-off frequency of the filter. For lowpass filters, <i>FilterFrequency</i> acts as an upper bound frequency. For highpass filter, <i>FilterFrequency</i> acts as a lower bound frequency. For bandpass, <i>FilterFrequency</i> acts as a center frequency. <i>FilterQFactor</i> determines filter bandwidth. If no external control is connected to <i>FilterFrequency</i>, scale factor the <i>FilterFrequency</i> value. An acceptable range is 0 to half of the model sample rate. <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 2000.0
FilterQFactor	float32	1.0	 <i>FilterQFactor</i> is the filter quality factor, which determines filter roll-off for lowpass and highpass filters and filter bandwidth for bandpass filters. <i>FilterQFactor</i> is inversely proportional to filter roll-off or bandwidth. This field cannot be less than or equal to 0. If no external control is connected to <i>FilterQFactor</i>, scale factor is the <i>FilterQFactor</i> value. <i>Modifier</i>. multiply (*) <i>Modifier_default</i>: 0.7071

Table 46: NoiseSource control inputs

Table 47, "NoiseSource control output" below lists and describes the **NoiseSource** control output variable:

Name	Туре	Default Value	Description
OutGain	float32	1.0	 <i>OutGain</i> applies the amplitude gain control to the output signal. If no external control is connected to <i>OutGain</i>, the scale factor equals the <i>OutGain</i> value. <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 1.0

Table 47	NoiseSource	control	output
----------	-------------	---------	--------

Table 48, "NoiseSource internal parameters" below lists and describes **NoiseSource** internal parameter variables:

Name	Туре	Default Value	Description
FilterType	filter_type2	LowPass	 Determines the two-pole filter type applied to the input signal: Lowpass Highpass Bandpass LowPassQ BandPassQ HighPassQ Notch If no filtering is desired, <i>FilterType</i> should be OFF. Three <i>Q</i> filters are amplitude-adjusted so the filter has a unity gain at a roll-off frequency and maintains this gain as the quality factor increases. <i>Bandpass</i> filters have lowpass and highpass poles at the same roll-off frequency.
NoiseColor	noise_color	White	 Determines type of noise applied to input signal: White Noise: noise with a flat power spectral density; the intensity is the same at all frequencies within a given band. Pink Noise: a random signal whose amplitude decreases as the frequency increases, preserving constant audio strength per frequency increment. Brown Noise: if the spectral density is proportional to 1/ f², it has more energy at lower frequencies, even more than pink noise.

 Table 48: NoiseSource internal parameters

2.15 PEnvelope

Summary: Parametric Envelope (**PEnvelope**) applies a parametric filter (**PFilter**) to an input signal based on three **MathFunctions**.

Description: **PEnvelope** applies the internal parametric filter to a given band of the input signal, which is determined by three parameters:

- Center frequency
- Bandwidth
- Desired gain

Table 49, "PEnvelope audio input and output" below lists and describes the **PEnvelope** audio input and output variables:

Name	Туре	Default Value	Description
Audio Input			
InSignal	audio	N/A	Provides a connection to an audio signal for fil- tering.
Audio Output			
OutSignal	audio	N/A	The output audio signal after it is filtered.

 Table 49: PEnvelope audio input and output
 Image: Comparison of the second second

Table 50, "PEnvelope control inputs" below lists and describes **PEnvelope** component's control input variables:

Name	Туре	Default Value	Description
Control	float32	1.0	Determines what the input is going to be to the MathFunctions .
Enable	Boolean	FALSE	When TRUE , the filter is turned on.
ControlFunction	N/A	<select></select>	Defined in MathFunction.

Table 50: PEnvelope control inputs

Table 51, "PEnvelope internal parameters" below lists and describes **PEnvelope** internal parameter variables:

Name	Туре	Default Value	Description
BandwidthFunction	function	<select></select>	Defined in MathFunction to set the filter band- width in Hertz.
FreqFunction	function	<select></select>	Defined in MathFunction to set the filter frequency.
GainFunction	function	<select></select>	Defined in MathFunction to set the filter gain.

Table 51: PEnvelope internal parameters

2.16 PFilter

Summary: **Parametric Filter** (**PFilter**) is a single-band parametric equalizer that allows you to control the amplitude of a given band of the input signal.

Description: **PFilter** applies the internal parametric filter to a given band of the input signal which is determined by three parameters:

- Center frequency
- Bandwidth
- Gain

Table 52, "PFilter audio input and output" below lists and describes **PFilter** audio input and output variables:

Name	Туре	Default Value	Description	
Audio Input				
InSignal	audio	N/A	<i>InSignal</i> is the connection to the signal to be used as an input to the filter. The input signal comes from another component in the model.	
Audio Output				
OutSignal	audio	N/A	The filtered audio signal. If <i>Enable</i> is FALSE , it passes original audio without filtering.	

Table	<i>52</i> :	PFilter	audio	input	and	output
-------	-------------	---------	-------	-------	-----	--------

Name	Туре	Default Value	Description
Bandwidth	float32	1.0	Sets the bandwidth around its center fre- quency. Units are in Hertz.
Enable	Boolean	FALSE	When TRUE , turns the filter on.
Frequency	float32	1.0	The center frequency. Units are in Hertz.
Gain_dB	float32	1.0	Sets the gain value for the filter. Units are in decibels (dB).

Table 53, "PFilter control inputs" below lists and describes **PFilter** control input variables:

Table 53: PFilter control inputs

2.17 Playsound

Summary: **Playsound** plays digitally encoded sound files. Sounds that have no dynamically varying elements except for overall volume level should be as fixed, offline recorded sound files (e.g., missile launch). Host inputs do the following:

- Trigger playback
- Pause playback
- Set the start of file offset
- Set the end of file offset
- Adjust the overall output gain
- Set the file index number for grouped sound files

Description: *Trigger* and *Pause* control playback. The playback behavior is determined by *Loop* and *Playing* that are set as part of the sound file definition outside of **Playsound**. If the sound file is set for *Loop*, **Playsound** plays the file to its end, then starts at the beginning again until *Trigger* is removed. If the sound file is set for *PlayAll*, **Playsound** plays the file to its end when *Trigger* is removed.

If **Playsound** points to a sound group or library, *SoundIndex* determines which sound file within the group or library is played. *SoundIndex* must be greater than 0 for a sound file within a sound group to be played. **Playsound** does not play if *SoundIndex* is 0. If *Trigger* value is **TRUE**, and *SoundIndex* increments, the sound file plays as if *Trigger* were **TRUE** with the new *SoundIndex* value. If *Trigger* is **TRUE** and the *SoundIndex* increments before the current file is done playing, *PlayAll* and *Loop* determine the behavior.

Several levels of organization contain sound files. A library is a collection of groups. A group is a collection of sounds or play files. Within **Playsound**, set *LibraryId* must be set and is not modified by an external control (e.g., a host control). You can set the group ID locally within **Playsound** or set it with an external control. *SoundIndex* determines which sound file within the specified library and group is selected. A group value of 0 indicates that the sound file is not in a group, but directly under the library equivalent to **Model Builder** organization. *OutGain* controls the amplitude of the **Playsound** output. The output signal from a prerecorded sound file can connect to any component that accepts audio as an input, such as a **Mixer**.

Table 54, "Playsound audio output" below lists and describes the **Playsound** audio output variable:

Name	Туре	Default Value	Description
Out	audio	N/A	The output signal from Playsound , which may connect to another component.

Table 54: Playsound audio output

Table 55, "Playsound control inputs" on the next page lists and describes **Playsound** control input variables:

Name	Туре	Default Value	Description
BeginOffset	float32	1.0	A value between 0.0 and 1.0 adjusts the start position of the sound file. The sound must fully buffer for this variable to function; ensure the sound buffer setting is TRUE for the Sound Repository .
EndOffset	float32	1.0	A value between 0.0 and 1.0 adjusts the end position of the sound file. The position is calculated relative to the end of the file (i.e., a value of 0.3 results in an end position of 70 percent of the entire length of the file). If <i>EndOffset</i> is less than the start offset after the <i>BeginOffset</i> calculation is made, <i>EndOffset</i> results in a value of 0.0. The sound must fully buffer for this vari- able to function; ensure the sound buffer setting is TRUE in the Sound Repository .
GroupID	playsound_ group	0	Selects the group containing the sound file.
LibraryId	playsound_ library	<select></select>	Selects the library containing the group and sound file.

Name	Туре	Default Value	Description
OutGain	float32	1.0	Amplitude gain of the file replay source. If the gain connection is blank, then the gain scale factor is the gain value; otherwise, the gain is the scale factor multiplied by the output result of the control object.
			 Modifier. multiply (*) Modifier_default. 1.0 Range: 0.0-Inf
Pause	Boolean	FALSE	 The PAUSE state. TRUE freezes the sound file playing; FALSE allows play to continue from the current file position. If no external variable is connected to <i>Pause</i>, the modifier equals the local value. <i>Modifier</i>: XOR <i>Modifier_default</i>: FALSE
Randomize	Boolean	FALSE	When TRUE , the Playsound signal has a counter running and starts the sound at the counter position when the sound triggers, resulting in a random start position. In Sound Library , the sound file buffer must be TRUE for <i>Randomize</i> to take effect.
SoundIndex	playsound_ sound	0	Selects the sound file you want to play.
Trigger	Boolean	FALSE	Triggers the sound file to play.

Table 55: Playsound control inputs

Table 56, "Playsound control output" below lists and describes the **Playsound** control output variable:

Name	Туре	Default Value	Description
Playing	Boolean	FALSE	TRUE if Playsound is actively playing audio.

 Table 56: Playsound control output

2.18 Pulse

Summary: This signal source produces a PulseStream signal.

Note: A Pulse signal is similar to the square wave except it is limited to positive amplitudes.

Description: This signal source produces a **PulseStream** signal. *Gain*, *Frequency* and *MarkSpaceRatio* can be controlled by input variables from elsewhere in the model or from the host interface. Other signals in the model can modulate *Frequency* and *Amplitude*.

The frequency of the output pulse signal is determined by a combination of *Frequency* and *FreqModSignal*. If no signal source is connected to *FreqModSignal*, only *Frequency* is used. If a signal source is connected to the *FreqModSignal*, the actual frequency of the waveform is varied according to the amplitude of the modulating signal. The degree to which the frequency varies is controlled by *FreqModDepth*. Use the following formula to calculate the actual frequency:

 $Frequency \times [1 + (FreqModDepth \times FreqModSignal)]$

When *FreqModSignal* is **Off**, its amplitude is 0.0. When the waveform frequency is less than or equal to 0, **Wave** does not generate a signal.

Gain and *AmpModSignal* determine the output pulse signal's actual amplitude. If *AmpModSignal* has no signal source, only *Gain* determines the amplitude. If a signal source is connected to *AmpModSignal*, the output pulse's amplitude varies according to the modulating signal's amplitude. The modulation depth controls how much the amplitude varies. Use the following formula to calculate the actual amplitude:

 $Gain \times [1 + (AmpModDepth \times AmpModSignal)]$

When *AmpModSignal* is **Off**, its amplitude is 0.0. When the waveform amplitude is less than or equal to 0, **Pulse** does not generate a signal.

Table 57, "Pulse audio input and output" below lists and describes **Pulse** audio input and output variables:

Name	Туре	Default Value	Description
Audio Input			
AmpModSignal	audio	N/A	The amplitude modulation signal controls the amp- litude of the final output pulse. To avoid unpre- dictable behavior care should be taken to ensure that the product of modulation depth and mod- ulation signal does not span a range greater than - 1.0 to +1.0.
FreqModSignal	audio	N/A	The frequency modulation signal controls the actual generated frequency. To avoid unpre- dictable behavior, ensure that the product of mod- ulation depth and modulation signal does not span a range greater than -1.0 to +1.0.
Audio Output			
OutSignal	audio	N/A	<i>OutSignal</i> is the output signal from Pulse .

Table 57: Pulse audio input and output

Table 58, "Pulse control input" on the facing page lists and describes **Pulse** control input variables:

Name	Туре	Default Value	Description
AmpModDepth	float32	1.0	Controls the effect of the frequency modulation signal. Typical ranges are 0 to 1.0, when used in conjunction with a unity gain modulation signal. If no external variable is connected to <i>AmpModDepth</i> , the scaler is <i>FreqModDepth</i> . To avoid unpredictable behavior, ensure the product of <i>AmpModDepth</i> and <i>AmpModSignal</i> does not span a range greater than -1.0 to + 1.0. • <i>Modifier</i> . multiply (*) • <i>Modifier_default</i> : 0.0 • <i>Range</i> : 0.0-1.0

Name	Туре	Default Value	Description
Frequency	float32	1.0	 Frequency in Hertz of a wave generated by the waveform synthesizer. The frequency is the number of oscillations made per second for the given waveform. If no external variable is connected to <i>Frequency</i>, the value of the scaler is used. <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 0.0
			• <i>Range</i> : 0.0 - 1/2 × <i>Sample Rate</i>
FreqModDepth	float32	1.0	Controls the effect of the frequency modulation signal. If no external variable is connected to <i>Fre-qModDepth</i> , the value of the scaler is the fre-quency modulation depth. To avoid unpredictable behavior, ensure the product of the modulation depth and modulation signal does not span a range greater than -1.0 to +1.0.
			 <i>Modifier</i>. multiply (*) <i>Modifier_default</i>: 0.0 <i>Range</i>: 0.0-1.0
Gain	float32	1.0	Amplitude gain of the waveform. If no external variable is connected to <i>Gain</i> , the value of the scaler is used.
			 <i>Modifier</i>. multiply (*) <i>Modifier_default</i>. 1.0 <i>Range</i>: 0.0-Inf
MarkSpaceRatio	float32	1.0	The pulse width or mark-to-space ratio of the wave. The pulse is positive relative to the period of the wave. (e.g., a value of 0.5 means in a given period, the pulse output is +ve for half the time and 0 for the other half). If no external variable is connected to <i>MarkSpaceRatio</i> , the value of the scaler is used. <i>Modifier</i> : multiply (*) <i>Modifier_default</i> : 0.5 <i>Range</i> : 0.0-1.0

Table 58: Pulse control input

2.19 PulseSequence

Summary: **PulseSequence** can generate a repeating series of up to eight pulses of arbitrary pulse width, pulse amplitude, and timing.

Description: PulseSequence is a signal component that generates a repeating series of up to eight pulses of arbitrary pulse width, pulse amplitude, and timing. Typically, this signal is used to frequency or amplitude modulate other signals. Part (a) of Figure 8, "PulseSequence timing" below shows what the various parameters in **PulseSequence**. The paint count specifies the number of pulses, while the delays, amplitudes, and durations are specified as shown. An external signal can modulate the pulse sweep time. How the pulses within the sweep act depends on whether the paint times fixed or fractional. For fixed paint times, the paint times and durations are defined in terms of the number of microseconds after the initiation of the sweep. Modulating the sweep time does not affect the pulse time. If the sweep time cuts off a pulse, it does not generate.

Part (b) shows the same pulse sequence as part (a), but the sweep time shortens in fixed paint time mode. For fractional paint times, the paint times and durations are defined in terms of the fraction of the total sweep time. Modulating the sweep time compresses (or extends) the pulses and moves them closer together or farther apart. Part (c) shows the same pulse sequence as part (a), but the sweep time shortens in fractional paint time mode.

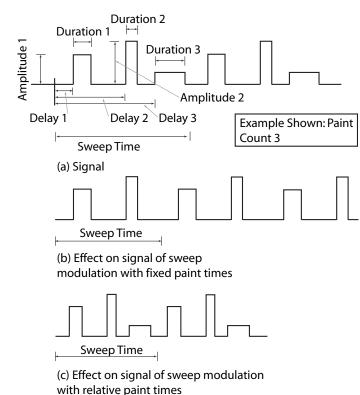


Figure 8, "PulseSequence timing" below shows PulseSequence timing:

Figure 8: PulseSequence timing

Table 59, "PulseSequence audio inputs and output" below lists and describes **PulseSequence** audio input and output variables:

Name	Туре	Default Value	Description
Audio Input			
GainMod	audio	N/A	Provides a connection to a signal that modulates the amplitude of the PulseSequence .
SweepMod	audio	N/A	Provides the audio input connection for the sweep time modulation.
Audio Output			
OutSignal	audio	N/A	Audio output signal from PulseSequence .

 Table 59: PulseSequence audio inputs and output

Table 60, "PulseSequence control inputs" on the next page lists and describes the **PulseSequence** control input variables:

Name	Туре	Default Value	Description
Duration1–Dur- ation8	float32	1.0	Provides each pulse's width in microseconds (μ s) (Fixed stage) or as fraction of sweep time (Fractional stage). Pulse's resolution duration is 1/sample rate. A 48 kHz sample rate = 20.833 μ s.
Gain	float32	1.0	Amplitude gain of pulse. If blank, then the <i>Gain</i> scale factor is the <i>Gain</i> value. Otherwise, <i>Gain</i> = <i>Scale Factor</i> × <i>Output Result</i> , where <i>Output Result</i> represents the output result of control objects.
GainModEn	Boolean	FALSE	Control parameter enabling connection that provides amplitude gain control from elsewhere in model.
PaintCount	uint8	0	Number of pulses in a sweep. Allowable values are from 1 –8. A value of 0 disables PulseSequence .
SweepModEn	Boolean	FALSE	Control parameter enabling connection that provides sweep modulation control from else- where in model.

Name	Туре	Default Value	Description
SweepModDepth	float32	1.0	Provides modulation depth for sweep modulation signal ranging from 0–1. If the modulation signal has a gain of 1, then the sweep time (or fre- quency) modulates between 0 and twice normal value. A modulation depth of 0 means no sweep modulation occurs.
SweepTime	float32	1.0	Provides length of sweep containing pulses in ms. For details, go to Figure 8, "PulseSequence timing" on page 48. If <i>PaintTimes</i> is Fractional , this variable is a frequency in Hertz. The sweep time's timing resolution = 1/sample rate. A 48 kHz sample rate has a 20.833 µs resolution.

Table 60: PulseSequence control inputs

Table 61, "PulseSequence internal parameters" below lists and describes **PulseSequence** internal parameter variables:

Name	Туре	Default Value	Description
Amplitude1– Amplitude8	float32	1.0	Provides each pulse's height, ranging from 0–1.
Delay1– Delay8	float32	1.0	Delays pulse between the sweep and each pulse's start. If the pulse delay puts the pulse outside of the sweep, the pulse does not generate. <i>Delay's</i> resolution is 1/sample rate. An 8 kHz sample rate has a 125 ms resolution.
PaintTimes	pulse_step_ mode	fixed	If Fixed , sweep time, delay times and durations are measured in microseconds. If Fractional , sweep equals a frequency in Hertz; duration/delays are frac- tion of sweep time.

Table 61:	PulseSequence	internal	parameters
-----------	---------------	----------	------------

2.20 PulseStep

Summary: PulseStep can generate a repeating series of up to sixteen sequential pulses.

Description: PulseStep can generate a repeating series of up to sixteen sequential pulses of arbitrary pulse width and pulse amplitude. The pulses follow immediately one after the other. There is no space between them. Typically, this signal is used to frequency or amplitude modulate other signals.

The string of pulses can loop repeatedly with a specified loop time or can trigger in a "oneshot" sequence. When looped, another signal can modulate the loop time. If the loop time is modulated, it can shorten and lengthen the pulses (i.e., fractional step times) or keep it at a constant length (i.e., fixed step times). At the end of the pulses, the output of the signal goes to a constant amplitude, which is specified in *AmplitudeOff* (i.e., the amplitude when all the pulses are off).

In addition, an external signal can modulate the signal gain:

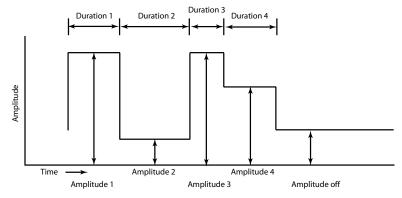


Figure 9: PulseStep signal

Table 62, "PulseStep audio inputs and output" below lists and describes **PulseStep** audio input and output variables:

Name	Туре	Default Value	Description
Audio Inputs			
GainMod	audio	View Scope	Provides a connection to a signal that modulates the amplitude of the pulse sequence.
LoopMod	audio	N/A	Provides a connection to a control component that gives the loop modulation depth.
Audio Output			
OutSignal	audio	N/A	Audio output signal from PulseStep.

Table 62: PulseStep audio inputs and output

Table 63, "PulseStep control inputs" on the next page lists and describes **PulseStep** control input variables:

Name	Туре	Default Value	Description
Amplitude1– Amplitude16	float32	1.0	Provides the amplitudes for the pulses. Go to Fig- ure 9, "PulseStep signal" above.

Name	Туре	Default Value	Description
Duration1–Dur- ation16	float32	1.0	Provides the durations for the pulses in micro- seconds (i.e., fixed times) or as a fraction of the sweep time (i.e., fractional times). Go to Figure 9, "PulseStep signal" on the previous page.
Gain	float32	1.0	Amplitude gain of the signal. If <i>Gain</i> is blank, then the scale factor is the <i>Gain</i> value. Otherwise, <i>Gain</i> is calculated using the following formula:
			Gain= Scale Factor × Output Result
			where <i>Output Result</i> represents the control component's output result.
GainModEn	Boolean	FALSE	Enables the gain modulation.
LoopModDepth	float32	1.0	Provides the modulation depth for the loop mod- ulation signal. This should be between 0 and 1. If the modulation signal has a gain of 1, then the loop time or frequency does modulate between zero and twice its normal value. A modulation depth of 0 means that no loop modulation occurs.
LoopModEn	Boolean	FALSE	Enables the loop modulation.
<i>LoopTime</i> (or fre- quency)	float32	1.0	LoopTime (i.e., fixed mode) or LoopFrequency (Hz) (i.e., fractional mode) determines how often the pulses repeat themselves. If LoopTime is 0, PulseStep goes into one-shot mode. In one-shot mode, the pulses generate only StepCount changes from 0 to a non-zero value. Otherwise, AmplitudeOff determines the output.
StepCount	uint8	0	An integer that provides the number of pulses. It must be between 1 and 16. Setting the value to 0 turns PulseStream off, so the signal output is <i>AmplitudeOff.</i> If pulse step signal is in one-shot mode, then changing <i>StepCount</i> from zero to a non-zero value triggers PulseStream to start.

 Table 63: PulseStep control inputs

Table 64, "PulseStep internal parameters" below lists and describes **PulseStep** internal parameter variables:

Name	Туре	Default Value	Description
AmplitudeOff	float32	0.0	Provides the signal's amplitude when no pulses are generated; occurs either because <i>StepCount</i> is zero or in "dead time" at the end of a loop when no more pulses exist.
PlayAll	Boolean	FALSE	Parameter is in one-shot mode. In normal mode, if the step count is toggled from 0 to a non-zero value and back to zero, pulses stop playing immediately when the <i>StepCount</i> returns to zero. In <i>PlayAll</i> , pulses finish playing to the end of sequence.
StepMode	pulse_step_ mode	fixed	Determines whether pulse durations are given in absolute times in microseconds (i.e., Fixed mode) or as a fraction of the loop time (i.e., Fractional mode). When the loop time is modulated, Fractional mode causes pulses to shorten and lengthen in proportion to the loop time. In Fixed mode, pulses remain at their fixed durations when the loop time varies. If the loop time becomes less than the sum of pulse dur- ations in Fixed mode, end pulses are cut off.

Table 64: PulseStep internal parameters

2.21 PulseStream

Summary: The **PulseStream** signal source is a sophisticated signal source that generates a stream of pulses. Like the **Pulse** signal, the pulses have an amplitude between 0 and 1.

Description: The **PulseStream** is typically used to frequency- or amplitude-modulate other signals, providing time-varying tones. Figure 10, "PulseStream signal" on the next page shows the pulse width and Pulse Repetition Interval (PRI). The PRI is usually the *Main_PRI* modulated by some other signal or function. There are several ways to modulate the timing between pulses. These different modulation methods are called **Pulse** types and are specified in *PulseType*. Each *PulseType* has a number from 1 to 255 and a name. For each *PulseType*, some of the parameters are ignored.

Figure 10, "PulseStream signal" below shows which PulseTypes use which parameters:

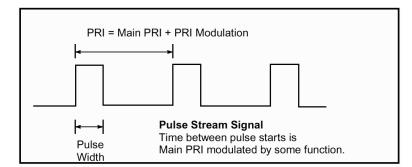


Figure 10: PulseStream signal

Figure 11, "Signal modulated" below shows how the first few *PulseTypes* work. The graph shows the PRI as a function of time. The specific example is a triangle modulated **PulseStream** (*PulseType* 3, Triangle.) Built into the object are sine, triangle, sawtooth, and square wave modulations.

To use an arbitrary signal to modulate the PRI, select *PulseType* 9 (external) and enter a signal in *Main_PRI*. For the built-in modulation signals, enter a modulation frequency and modulation depth. For the external *PulseType*, the *PRI_Mod_Freq* is ignored and *PRI_Mod_Depth* becomes a scale factor for the external modulation signal.

Figure 11, "Signal modulated" below shows the modulated signal:

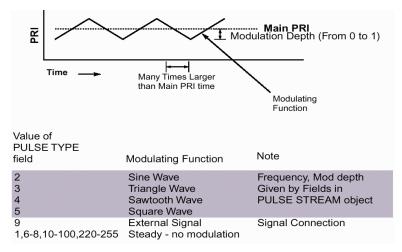


Figure 11: Signal modulated

PulseType 101 to 150 are called dwel1-to-dwell 50. The spacing between pulses (PRI) is modulated in a step like fashion. The length of time on each step is given by the dwell time. The number of steps is the dwell number + 1 (e.g., dwell5 has six steps). The steps are evenly spaced, and the modulation depth gives their height.

The PRI time varies between $Main_{PRI} \times (1 - PRI_{Mod}_{Depth})$ and $Main_{PRI} \times (1 + PRI_{Mod}_{Depth})$:

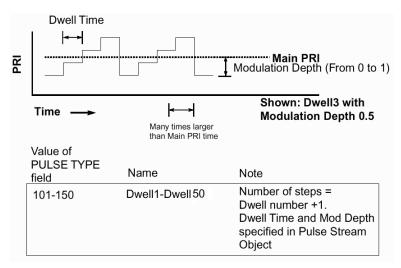


Figure 12: Dwell

Figure 13, "Random Dwell" on the next page shows the Random Dwell *PulseType* (*PulseTypes* 151–199). The random dwell is the same as the dwell, except that instead of stepping sequentially through the levels it jumps randomly among them. The number of levels is given by the Random Dwell number + 1 (i.e., Random Dwell 5 would jump through six different PRI modulation times).

In addition, a Random Dwell with no number (i.e., *PulseType* 199). With this *PulseType*, the PRI time jumps randomly throughout its allowed range, staying at each PRI time for a dwell time.

The allowed range for the random dwell is between $Main_{PRI} \times (1 - PRI_Mod_Depth)$ and $Main_{PRI} \times (1 + PRI_Mod_Depth)$:

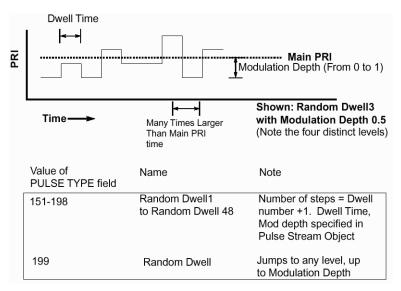


Figure 13: Random Dwell

The stagger *PulseTypes* operate differently from the other *PulseType* mentioned before. Instead of modulating the PRI, up to eight PRI values define the pulse spacing. The number of pulses in the stream equals the stagger number (e.g., Stagger 4 has four pulses per cycle).

Main_PRI determines the cycle length. The stagger *PulseType* is the only one to use the Stagger PRI values. It ignores all of the PRI modulation variables, as shown in Figure 14, "Stagger" below:

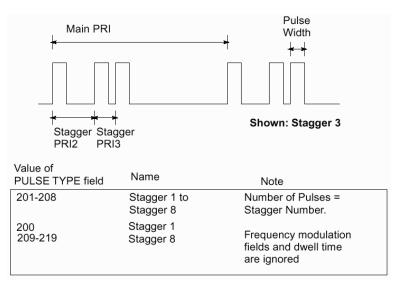


Figure 14: Stagger

Table 65, " PulseStream type	s" below summarizes	s each PulseType and its	s corresponding para-
meters:			

Number	Name	Stagger PRIs	PRI Freq	Mod. Depth	Dwell Time
1	steady	N	N	N	N
2	sine	Ν	Y	Y	Ν
3	triangle	Ν	Y	Y	Ν
4	sawtooth	Ν	Y	Y	Ν
5	square	Ν	Y	Y	Ν
6–8	steady	Ν	Ν	Ν	Ν
9	external	Ν	Ν	Y	Ν
10–100	steady	Ν	Ν	N	Ν
101–150	dwell-dwell50	Ν	Ν	Y	Y
151–198	random dwell1– random dwell 48	Ν	Ν	Y	Y
199	random dwell	Ν	Ν	Y	Y
200	stagger1	Y	Ν	N	Ν
201–208	stagger1–stag- ger8	Y	Ν	Ν	Ν
209–219	stagger8	Y	Ν	Ν	Ν
220–255	steady	Ν	Ν	Ν	Ν

Table 65: PulseStream types

Table 66, "PulseStream audio inputs and output" below lists and describes **PulseStream** audio input and output variables:

Name	Туре	Default Value	Description		
Audio Inputs					
GainMod	audio	N/A	Connection to a signal which modulates the amp- litude of PulseStream .		
PRI_Mod	audio	N/A	Provides a connection to a signal that modulates <i>Main_PRI</i> . Only <i>PulseType</i> 9 (external) uses this variable.		
Audio Outputs					
OutSignal	audio	N/A	<i>OutSignal</i> is the output signal from PulseStream , which may connect to another component or be directed to an output highway.		

Table 66: PulseStream audio inputs and output

Name	Туре	Default Value	Description
DwellTime	float32	1.0	Used by the dwell and random dwell pulse types (numbers 101–199). It gives the value in seconds that the PRI stays on a particular value.
Gain	float32	1.0	The amplitude gain of the PulseStream signal.
GainModEnable	Boolean	FALSE	Determines whether the amplitude gain mod- ulation is enabled. Value is TRUE if a signal is con- nected to <i>GainMod</i> .
Main_PRI	float32	1.0	Provides the basic spacing between pulses, as measured from the beginning of successive pulses. This spacing can be modulated by the dif- ferent pulse types. Different pulse types can mod- ulate this spacing.
PRI_Mod_Depth	float32	1.0	A number between 0 and 1 that determines the modulation depth for the <i>Main_PRI</i> modulation. A value of 0 indicates no modulation. The range of PRI values is from <i>Main_PRI</i> × (1 – <i>PRI_Mod_Depth</i>) to <i>Main_PRI</i> × (1 + <i>PRI_Mod_Depth</i>). Steady and Stagger <i>PulseTypes</i> ignore this variable type.
PRI_Mod_Freq	float32	1.0	For <i>PulseTypes</i> 2–5 (i.e., sine, triangle, sawtooth, square), this variable provides the frequency of the signal modulating the <i>Main_PRI</i> . It is ignored for other <i>PulseTypes</i> .
PulseType	uint8	0	Determines the type of PulseStream . The <i>PulseType</i> is a number between 0 and 255. Each number has an associated name that appears next to the number. A <i>PulseTypes</i> of 0 turns off the PulseStream .
PulseWidth	float32	1.0	Provides the width of the pulses in the PulseStream in microseconds.
Stagger_PRI_2– Stagger_PRI_8	float32	1.0	Gives the stagger time in microseconds for the Stagger <i>PulseTypes</i> . These values are only used by the Stagger <i>PulseTypes</i> (i.e., 200–219).

Table 67, "PulseStream control inputs" below describes **PulseStream** control input variables:

Table 67: PulseStream control inputs

Table 68, "PulseStream internal parameter" below lists and describes the **PulseStream** internal parameter:

Name	Туре	Default Value	Description
PulseTypeName	string	OFF	Displays the currently selected <i>PulseTypes</i> .

2.22 RecordReplay

Summary: With **RecordReplay**, you can record and replay digitally encoded sound files. This component records any signal source within a model. It also features host control inputs for controlling **RecordReplay** modes, file selection, file position, gain, and other parameters.

Description: RecordReplay lets you record an input signal and replay it from a prerecorded file on the Telestra server hard drive. You might use **RecordReplay** for after-action review (AAR) or in-flight replay of headset audio in the simulator.

Figure 15, "RecordReplay internal logic" below shows RecordReplay's internal logic:

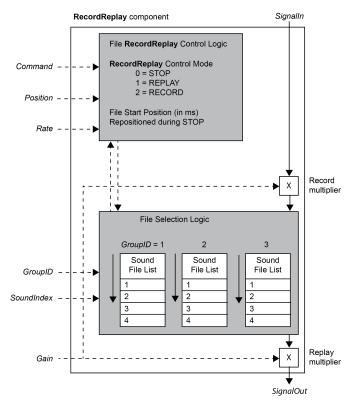


Figure 15: RecordReplay internal logic

During RECORD mode, *SignalIn* audio enters **RecordReplay**, and the signal is multiplied by *Gain*. The component stores the audio based on *Command*, *Position*, and *Rate*. It then saves the file on the Telestra server in the /var/local/asti/recordreplay folder and assigns it a *GroupID* and *SoundIndex* number.

GroupID and *SoundIndex* organize the sound files into groups and allow you to select a file to replay. *GroupID* represents a top-level folder storing multiple *SoundIndex* files. These files have the following name structure: **library000_group***GroupID_***index***SoundIndex*.tsr.

During REPLAY mode, **RecordReplay** uses *GroupID* and *SoundIndex* to find the sound file. To adjust the volume, it multiplies the *SignalOut* audio by the *Gain* value. *SignalOut* then replays based on the *Command*, *Rate*, and *Position* parameters.

Position activates when *Command* leaves STOPPED (0) mode and begins RECORD (2) or REPLAY (1). Its meaning depends on whether the *Loop* variable is **TRUE** or **FALSE**. When *Loop* is **FALSE**, *Position* defines where the component starts recording or replaying in the file. Units (i.e., positions) are measured in milliseconds (ms).

Position Value	Loop=FALSE	Loop=TRUE
-1 and lower	From the end of the file, the audio pos- ition moves back the number of ms in the negative position number. For example, a -1 value produces a -1 ms offset.	From the stop position, the audio position moves back the number of ms defined in the negative position number. For example, a -1 value results in a -1 ms off- set.
0	The audio resumes from the stop pos- ition.	The audio resumes from the stop pos- ition.
2	The audio plays from the beginning of the file. Set <i>Rate</i> to 48 kHz.	From the stop position, the audio position moves forward the number of ms in the positive position number. For example, a 17 value results in a +17 ms offset.
8	The audio plays from the beginning of the file. Set <i>Rate</i> to 16 kHz.	
16	The audio plays from the beginning of the file. Set <i>Rate</i> to 8 kHz.	
17 and higher	From the beginning of the file, the audio position moves forward the number of ms defined in the positive position num- ber. For example, a 17 value produces a +17 ms offset.	

Table 69, "Position behaviors" below defines *Position* behaviors when *Loop* is **TRUE** or **FALSE**:

Table 69: Position behaviors

To replay the audio, convert the Telestra sound recording (.tsr) file into waveform (.wav) audio file format using the Telestra web interface. For more information about .tsr file conversion in the Telestra web interface, go to "Sound Files" in the *Telestra Web Interface User Guide*.

Telestra also includes a built-in tool that converts .tsr files into .wav files. To use this tool, go to the Telestra server's command line, and run the **tsr2wav.py** script. To convert a single .tsr file into a .wav file with a new name, run the following:

tsr2wav.py -i file_name.tsr -o new_file_name.wav -r NNNN

where *file_name* is the .tsr sound file (e.g., library001_group002_index0001.tsr), *new_file_name* is the converted .wav audio file (e.g., ConvertedFile1.wav), and *NNNN* is the input file's audio rate in hertz (Hz). The default rate is 8 kHz (i.e., 8000 Hz), but Telestra also supports 16 kHz and 48 kHz.

To convert all the .tsr files in a recording directory to .wav files, run the following:

tsr2wav.py -i *directory* path/*.tsr -r NNNN -v

where *directory_path* is the location of the Telestra recordings (e.g., /var/local/asti/recordreplay). If the script does not specify an output file, the converted .wav files use the original .tsr file names. The **-v** option provides additional information about the file conversion process (e.g., completion percentage, processing time in seconds), which may be useful if you are converting a large number of files.

To view a help message for the tsr2wav.py script, run tsr2wave.py -h.

Table 70, "RecordReplayaudio input and output" below lists and describes the **RecordReplay** audio input and output variables:

Name	Туре	Default Value	Description
Audio Input			
Signalln	audio	N/A	Audio linked to this variable is recorded. <i>SignalIn</i> is unused in REPLAY mode. The <i>Gain</i> variable con- trols the audio level.
Audio Output			
SignalOut	audio	N/A	Output signal of RecordReplay . <i>Gain</i> controls the audio level and reads from the raw audio RecordReplay file. The audio is only an output when RecordReplay is in REPLAY mode.

Table 71, "RecordReplay control input variables" on the facing page lists and describes **RecordReplay** control input variables:

Name	Туре	Default Value	Description
Command	uint8	0	 RecordReplay contains three modes: 0 = STOP 1 = REPLAY 2 = RECORD Command must transition through STOP mode when it switches from RECORD to REPLAY or vice versa.
Gain	float32	1.0	Amplitude gain control for the RECORD or REPLAY audio. This variable affects both <i>SignalIn</i> and <i>SignalOut</i> .
GroupID	uint16	0	Identifies the RecordReplay file group. Each file is part of a specific group and may be stored on the hard drive. To point to a specific file, identify both the <i>GroupID</i> and the <i>SoundIndex</i> .
Length	uint32	0	Maximum duration of a nonlooped recording or the loop duration of a recording when <i>Loop</i> is TRUE . Units are in seconds.
Loop	Boolean	FALSE	Sets RecordReplay to continuously play or record in a loop. If FALSE , it stops recording or playing at the end of the file. If TRUE , RecordRe- play starts recording or replaying at position 0 when it reaches the end of the file.
Position	int32	0	Activates when <i>Command</i> leaves STOPPED (0) mode and begins RECORD (2) or REPLAY (1) mode. Its meaning depends on whether the <i>Loop</i> variable is TRUE or FALSE . Units (i.e., positions) are measured in milliseconds (ms).
Rate	rate_hz	rate_8kHz	Record audio rate selection. Configuration options are 8 kHz, 16 kHz, and 48 kHz. Rate change requires a model reload.

Name	Туре	Default Value	Description
Reset	Boolean	FALSE	Reloads the current file resource. <i>Reset</i> only works if RecordReplay is in STOPPED mode. It only triggers on the rising edge of the signal, when it changes from FALSE to TRUE . You might use <i>Reset</i> to swap or archive RecordReplay files on the server at run time.
			RecordReplay uses the following workflow:
			 Record a segment. Stop recording. Move the record files off the server (e.g., to archive). Set <i>Reset</i> to TRUE. Start recording again, which creates a new record file.
SoundIndex	uint16	0	Sets the recording's index number, letting you choose a specific sound file in a group. Every recording must have a unique <i>GroupID</i> and <i>SoundIndex</i> . To start replay, the value cannot be 0 .

Table 71: RecordReplay control input variables

Table 72, "RecordReplay control outputs" below lists and describes **RecordReplay** control output variables:

Name	Туре	Default Value	Description
CurrentPosition	int32	0	Displays the file's position in milliseconds (ms). <i>CurrentPosition</i> updates as RecordReplay records or replays audio. If RecordReplay stops the audio, the variable holds its current value until RecordReplay begins to replay or record.
CurrentFileLength	int32	0	Displays the current file length in ms of the selec- ted RecordReplay file.
FileMode	player_state	STOPPED	Displays the stopped, recording, or playing state of the file. It displays "RECORDING" when the file is recording and "REPLAY" when the file is replaying.
MaxFileLength	int32	0	The maximum file length is in ms, based on <i>Length</i> .
NewPosition	int32	0	The point in the file where it resumes if it begins recording or replaying.
PositionOffset	int32	0	Matches the position input and displays in ms.

Table 72: RecordReplay control outputs

2.23 SimpleMixer

Summary: The SimpleMixer provides quick and easy mixing of up to 32 input signals.

Description: This no-frills mixer component is the fastest way to mix audio. Up to 32 signals can be linked to the *InSignals* connection, and they are then mixed together equally. One overall *OutGain* is provided if the level needs to be moved up or down. **SimpleMixer** is most useful when central processing unit (CPU) processing is at a premium or when individual audio mixing controls are not necessary.

Table 73, "SimpleMixer audio input" below lists and describes the **SimpleMixer** audio input variable:

Name	Туре	Default Value	Description
InSignals	audio	N/A	An input connection for up to 32 audio signals.

Table	7 3:	SimpleMixer	audio	input
-------	-------------	-------------	-------	-------

Table 74, "SimpleMixer control input and output" below lists and describes **SimpleMixer** control input and output variables:

Name	Туре	Default Value	Description	
Control Input				
OutGain	float32	1.0	Volume control for the output mix's overall level.	
Control Output				
OutSignal	audio	N/A	The audio output of SimpleMixer , containing an equal amount of each input.	

Table 74: SimpleMixer control input and output

2.24 Sequencer

Summary: The Sequencer plays audio files in a specified order.

Description: The **Sequencer** cycles through the indexes (i.e., sound files) when the trigger is set to **TRUE**. The **Sequencer** drives the **Playsound** component.

Table 75, "Sequencer control inputs" on the next page lists and describes **Sequencer** control input variables:

Name	Туре	Default Value	Description
Continuous	Boolean	TRUE	Determines Sequencer behavior when <i>Trig-ger</i> is held TRUE . If this flag is TRUE , Sequen-cer continually steps through sequence. When it reaches an empty entry, it returns to the first entry and begins the sequence again. If flag is FALSE , Sequencer does only one pass through sequence. It stops sequencing when it reaches an empty entry.
Delay	uint32	1	Length of time (in seconds) between sequen- cing cycles; Sequencer is in <i>Continuous</i> mode.
Playall	Boolean	TRUE	When trigger is turned off, <i>Playall</i> determines if Sequencer stops immediately or plays to end of file. Defaults to TRUE , which plays to end of file.
Playing	Boolean	TRUE	Link from Playsound ; informs Sequencer that the Playsound is playing.
Reset	Boolean	TRUE	If reset flag is set, Sequencer is set to 0.0 .

Name	Туре	Default Value	Description
TriggerOut	Boolean	TRUE	TRUE initiates sequencing. <i>Continuous</i> mode flag determines how Sequencer behaves when <i>TriggerOut</i> is FALSE .

Table 75: Sequencer control inputs

Table 76, "Sequencer control outputs" below lists and describes **Sequencer** control output variables:

Name	Туре	Default Value	Description
GroupID	playsound_ group	0	Selects groups in libraries.
SoundIdx	playsound_ sound	0	Value of the file index to the played.
TriggerOut	Boolean	FALSE	When set to TRUE , <i>TriggerOut</i> initiates Sequencer .

Table 76: Sequencer control outputs

2.25 StereoWavRecord

Summary: **StereoWavRecord** records two audio channels, allows users to name sound files in the component, and saves files in waveform (.wav) audio file format.

Description: StereoWavRecord records two audio channels and saves them to a file on the Telestra server hard drive. *Name* allows you to name the sound file in the user interface. The component also saves recordings as .wav files. Unlike RecordReplay, you can listen to audio via third-party software without converting it from Telestra sound recording (.tsr) format. StereoWavRecord does not have built-in replay capabilities.

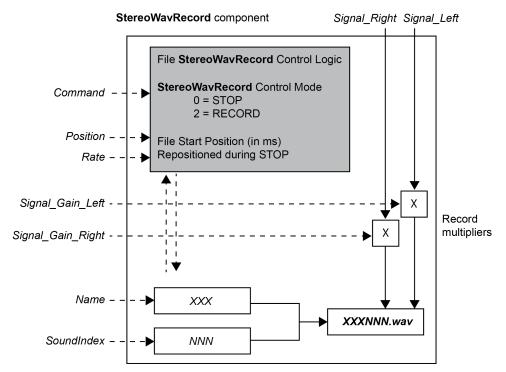


Figure 16, "StereoWavRecord internal logic" below shows the **StereoWavRecord** component's internal logic:

Figure 16: StereoWavRecord internal logic

During RECORD mode, *LeftInput* and *RightInput* audio enters **StereoWavRecord**, and the signals are multiplied by the *Signal_Gain_Left* and *Signal_Gain_Right* values. The component stores the audio based on *Command*, *Position*, and *Rate*. It then saves the file on the Telestra server in the default /var/local/asti/recordreplay folder and assigns it a *SoundIndex* number. *Name* and *SoundIndex* organize the sound files into sections, allowing you to choose a specific file. If you define a name, the file is called *NameSoundIndex*.wav (e.g., KCR003). If *Name* is blank, the file is called library000_group000_index*SoundIndex*.wav by default.

Caution: Before removing or copying files, stop RECORD mode. Otherwise, the header contains missing values.

Position activates when *Command* leaves STOP (0) mode and begins RECORD (2) mode. *Position* defines where **StereoWavRecord** starts recording in the file. Units (i.e., positions) are measured in milliseconds (ms).

Position Value	Description
-1 and lower	From the end of the file, the audio position moves back the number of ms defined in the negative position number (e.g., a -1 value results in a -1 ms off-set).
0	The audio resumes from the STOP position.
2	The audio plays from the beginning of the file; Rate must be set to 48 kHz.
4	The audio plays from the beginning of the file; <i>Rate</i> must be set to 16 kHz.
8	The audio plays from the beginning of the file; Rate must be set to 8 kHz.
9 and higher	From the beginning of the file, the audio position moves forward the number of ms defined in the positive position number (e.g., a 9 value results in a +9 ms off-set).

Table 77, "Position behaviors" below defines Position behaviors:

Table 77: Position behaviors

Table 78, "StereoWavRecord audio inputs" below lists and describes **StereoWavRecord** audio input variables:

Name	Туре	Default Value	Description
LeftInput	audio	N/A	Records audio from the left side of the headset. This input is divided into two subcategories:
			 Signal_Gain_Left: controls the volume for the left side. Signal_Left: controls the audio input signal for the left side.
RightInput	audio	N/A	Records audio from the right side of the headset. This input is divided into two subcategories:
			 Signal_Gain_Right: controls the volume for the right side. Signal_Right: controls the audio input signal for the right side.

Table	7 8:	Stereo W	VavRecord	audio	inputs
-------	-------------	----------	-----------	-------	--------

Table 79, "StereoWavRecord control inputs" below lists and describes **StereoWavRecord** control input variables:

Name	Туре	Default Value	Description
Command	uint8	0	 StereoWavRecord contains two modes: 0 = STOP 2 = RECORD
Gain	float32	1	Amplitude gain control for the RECORD audio. <i>Gain</i> affects both <i>LeftInput</i> and <i>RightInput</i> .
Length	uint32	0	Maximum duration of a nonlooped recording or the loop duration of a recording. Units are in seconds.
Name	string	N/A	Defines a name for the sound file. When this vari- able is defined, the file name is called <i>NameSoundIndex</i> .wav (e.g., KCR003.wav). When blank, the file is called library000_group000_ index <i>SoundIndex</i> .wav by default. For best results, define a name for the file.
Position	int32	0	Activates when <i>Command</i> leaves STOP (0) mode and begins RECORD (2). Units (i.e., positions) are measured in ms.
Rate	rate_hz	rate_8kHz	Record audio rate selection. Configuration options are 8 kHz, 16 kHz, and 48 kHz. Rate change requires a model reload.
Reset	Boolean	FALSE	Reloads the current file resource. <i>Reset</i> only works if the component is in STOP mode. It only triggers on the rising edge of the signal, when changing from FALSE to TRUE . You might use <i>Reset</i> to swap or archive StereoWavRecord files on the server at run time.
			The following describes the StereoWavRecord workflow:
			 Record a segment. Stop recording. Move the record files off the server (e.g., to archive). Set <i>Reset</i> to TRUE. Start the recording again, which creates a new record file.
SoundIndex	uint16	0	Sets the recording's index number.

Table	7 9:	StereoWavRecord	control	inputs
-------	-------------	-----------------	---------	--------

Table 80, "StereoWavRecord control outputs" below lists and describes **StereoWavRecord** control output variables:

Name	Туре	Default Value	Description
CurrentPosition	int32	0	Displays the file's position in milliseconds. <i>Cur- rentPosition</i> updates as StereoWavRecord records audio. If the component stops the audio, the variable holds its current value until the com- ponent begins to record.
CurrentFileLength	int32	0	After a recording, displays the current file length in ms of the selected StereoWavRecord file.
FileMode	player_state	STOP	Displays the stopped or recording state of the file. Displays "RECORDING" when the file is recording.
MaxFileLength	int32	0	Displays the maximum file length in ms. <i>MaxFileLength</i> is based on <i>Length</i> .
NextPosition	int32	0	The point in the file where it resumes if it begins recording.
PositionOffset	int32	0	Matches the position input and displays in ms.

Table 80: StereoWavRecord control outputs

2.26 VolumeControl

Summary: **VolumeControl** provides a host control for overall volume level and muting in a model.

Description: VolumeControl sets the main volume level. When Mute is TRUE, the resultant volume level is 0. Table 81, "VolumeControl control inputs and output" below lists and describes VolumeControl control input and output variables:

Name	Туре	Default Value	Description		
Control Inputs					
Mute	Boolean	FALSE	When <i>Mute</i> is TRUE , it sets the volume level to 0.		
Volume	float32	1.0	Sets main volume, overall controlled by host.		
Control Output	Control Output				
VolumeLevel	float32	1.000000	Resulting output of the volume setting.		

 Table 81: VolumeControl control inputs and output

2.27 Vox

Summary: **Vox** allows voice-activated or press-to-talk (PTT) control over an audio input signal. An optional filter may be applied to the input signal. If the filtered input signal level exceeds the **Vox** threshold level, **Vox** outputs the signal. Once the input signal level drops below the threshold, **Vox** remains active for the period of time specified by the **Vox** delay, and then it stops the output signal. Alternately, **Vox** can operate in PTT mode, where **Vox** outputs a signal only when *PTT* is set.

Description: **Vox** operates on an input signal. The source of the input signal is external audio that is connected to the **Vox** via *InSignal*. **Vox** first applies a filter (if enabled) to the input signal. The output from the filter is active only if the input signal source is active. The filter is controlled by the following parameters:

- FilterType
- FilterFreq
- FilterQ

FilterType determines the type of filter applied to the input signal:

- OFF
- Lowpass
- Highpass
- Bandpass
- Notch

If **Type** is set to **Off**, no filtering is applied to the input signal. *FilterFreq* (in Hertz) provides the roll-off frequency of the filter. The meaning of the *FilterFreq* depends on the filter type as follows:

- Filter type frequency meaning
- Off ignored
- Lowpass upper bound frequency
- Highpass lower bound frequency
- Bandpass center frequency with bandwidth controlled by *FilterQ*

FilterQ is the filter quality factor, which effectively determines the filter roll-off for lowpass and highpass filters and the filter bandwidth for bandpass filters. *FilterQ* is inversely proportional to the filter roll-off or bandwidth.

The filter parameters derive the filter coefficients for a two-pole *IIR* filter. If *FilterQ* is 0 or less, use a very low, non-zero value for the k calculation. If the **Filter Type** is **Off**, the filter output signal is the input signal.

If the filter output is active, **Vox** applies *Vox* or PTT control to the filtered signal. **Vox** includes *VoxEnable* and *PTT*. *VoxEnable* and *PTT* are specified by an externally controlled variable and an XOR logic gate control. XOR logic is applied to the external variable value and the gate control to derive a final value for the *VoxEnable* and *PTT* flags. If no external variable is connected, the value of the logic gate variable becomes the input value.

These two Boolean inputs control when the **Vox** outputs audio as follows:

- 1. *VoxEnable* = **FALSE**; *PTT* = **FALSE** No Output
- 2. *VoxEnable* = **TRUE**; *PTT* = **FALSE** Output active only when signal level exceeds the threshold
- 3. *VoxEnable* = **FALSE**; *PTT* = **TRUE** Output active always (regardless of signal level)
- 4. *VoxEnable* = **TRUE**; *PTT* = **TRUE** Output active always (regardless of signal level)

For Case 2, if the signal level drops below the threshold, **Vox** continues to output a signal for the duration specified in *VoxDelay*. The threshold level is specified by the **Vox** level control, which consists of a connection to an external control variable and an offset. The value of the external variable is added to the offset to derive the **Vox** threshold level. If no external variable is connected, the value for the offset becomes the **Vox** threshold level.

An amplitude gain control is applied to the **Vox** output. This output gain control consists of a connection to an external controlled variable and a scale factor. The value of the external variable is multiplied by the scale factor to derive the output gain. If no external variable is connected, the value for the scale factor becomes the signal gain.

Vox output audio should only be active if both of the following conditions are TRUE:

- 1. The output from the filter is active.
- 2. The derived output gain (*External Variable* × *Scale Factor*) is greater than 0.0.

Summary View contains two variables: *FilterSignalLevel* and *OutSignalLevel*:

- *FilterSignalLevel:* reflects the Root Mean Squared signal power at the **Vox** output.
- *OutSignalLevel:* the Root Mean Squared signal power of the output from the Vox component. This variable is only non-zero if the component output is active.

The *FilterSignalLevel* can be non-zero while the *OutSignalLevel* is zero. This would happen if the filtered signal does not exceed the **Vox** threshold. If the output signal is active, both variables have the same value.

Table 82, "Vox audio input and output" below lists and describes **Vox** input and output variables:

Name	Туре	Default Value	Description
Audio Input			
InSignal	audio	N/A	<i>InSignal</i> is the input signal into Vox . The filter and the Vox logic is applied to this signal to determine the output signal.
Audio Output			
OutSignal	audio	N/A	<i>OutSignal</i> is the output signal from Vox .

Table 82: Vox audio input and output

Table 83, "Vox control inputs" on the next page lists and describes **Vox** control input variables:

Name	Туре	Default Value	Description
OutGain	float32	1.0	 <i>OutGain</i> applies amplitude gain control to the primary output signal. If no external control is connected to <i>OutGain</i>, the scale factor is the <i>OutGain</i> value. <i>Modifier</i>: multiply (*) <i>Modifier</i> default: 1.0
PTT	Boolean	FALSE	In press-to-talk (PTT) mode, the input signal is the output only when <i>PTT</i> is set. In VOX mode, Vox behaves as if in HOT MIC mode (i.e., it always out- puts the signal). If no external control is connected to <i>PTT</i> , the exclusive-or (XOR) modifier is the <i>PTT</i> value. • <i>Modifier</i> : XOR • <i>Modifier_default</i> : FALSE
VoxEnable	Boolean	FALSE	 VoxEnable is the control variable for Vox mode. If this variable is FALSE, Vox is set for <i>PTT</i> mode. If no external control is connected to <i>VoxEnable</i>, the XOR modifier is the <i>VoxEnable</i> value. Modifier: XOR Modifier_default: TRUE

Name	Туре	Default Value	Description
VoxLevel	float32	0.0	 VoxLevel provides the Vox threshold level. When Vox mode is enabled, the input signal level is compared to VoxLevel and fed through only if it exceeds it. If no external control is connected to VoxLevel, the offset is used as the VoxLevel value. Modifier. add (+) Modifier_default: 0.002

Table 83: Vox control inputs

Table 84, "Vox control outputs" below lists and describes Vox control output variables:

Name	Туре	Default Value	Description
FilterSignalLevel	float32	0.0	Indicates the sound level of the filtered signal.
OutSignalLevel	float32	0.0	The same as the filtered signal level. When the Vox is not outputting audio, the value is 0.

Table 84: Vox control outputs

Table 85, "Vox internal parameters" on the facing page lists and describes **Vox** internal parameters:

Name	Туре	Default Value	Description
FilterFreq	float32	2000.0	 <i>FilterFreq</i> (in Hertz) provides the roll-off frequency of the filter. For lowpass filters, <i>FilterFreq</i> acts as an upper bound frequency. For highpass filters, <i>FilterFreq</i> acts as a lower bound frequency. For bandpass, <i>FilterFreq</i> acts as a center frequency. <i>FilterQ</i> determines the filter bandwidth. <i>Range</i>: (0.0 - Sample Rate) ÷ 2
FilterQ	float32	0.707100	<i>FilterQ</i> is the filter quality factor, which determines the filter roll-off for lowpass and highpass filters. The bandpass's filter bandwidth must be greater than or equal to 0.

filter_type2		
	LowPass	Determines the filter type applied to the input signal (e.g., <i>Lowpass</i> , <i>Highpass</i> , <i>Bandpass</i>). Filtering occurs before Vox compares the Vox and signal levels. Turn <i>FilterType</i> off to disable filtering.
		 Range: Off LowPass BandPass HighPass LowPassQ BandPassQ HighPassQ Notch Adjust the three <i>FilterQ</i> 's amplitudes so the filter has unity gain at the roll-off frequency and maintains this gain as the quality factor increases. The bandpass filters' lowpass and highpass poles are at the same
		roll-off frequency.
float32	2.0	<i>VoxDelay</i> is the amount of time (in seconds) after the input signal level falls below the Vox level that Vox continues to output audio.
	float32	float32 2.0

Table 85: Vox internal parameters

2.28 Wave

Summary: This signal source produces a waveform signal, which may be sine, sawtooth, triangle, or square.

Description: This signal source produces a waveform signal. Both amplitude and frequency can be controlled by input variables from elsewhere in the model or from the host interface. The frequency can also be modulated by another signal within the signal processor, with the model having control over the depth of modulation. The waveform signal type can be sine, sawtooth, triangle or square.

The waveform frequency is determined by a combination of *Frequency* and *FreqModSignal*. If no signal source is connected to the *FreqModSignal*, only *Frequency* is used.

If a signal source is connected to *FreqModSignal*, the actual frequency of the waveform varies according to the amplitude of the modulating signal. The degree to which the frequency varies is controlled by the modulation depth.

The following calculation determines the frequency:

 $ActualFreq = Frequency \times [1 + (FreqModDepth \times FreqModSignal)]$

where *FreqModSignal* is the amplitude of the modulating signal. A modulating signal with an active state of **OFF** should be treated as an amplitude of 0.0.

When the waveform frequency is less than or equal to 0, **Wave** does not generate a signal. The amplitude of the final signal is controlled by *Gain*. When *Gain* is less than or equal to 0, **Wave** does not generate a signal.

When the waveform type is square, there is an additional control for the Mark/Space ratio. This ratio is the proportion of time, the square wave amplitude is positive to the time the square wave amplitude is negative in a given cycle. If the waveform type is not square, the Mark/Space ratio is ignored.

Name	Туре	Default Value	Description
FreqModSignal	audio	N/A	Controls the actual generated frequency via the fol- lowing formula:
			ActualFreq = Frequency × [1+ (FreqModDepth x FreqModSignal)]
			It usually falls between 0–1.0, when used in con- junction with a unity gain modulation signal.
			<i>Important:</i> To avoid unpredictable behavior, ensure that the product of modulation depth and modulation signal does not span a range greater than -1.0 to +1.0.

Table 86, "Wave audio inputs" below lists and describes the **Wave** audio input variable:

Table 86: Wave audio inputs

Table 87, "Wave audio outputs" below lists and describes the Wave audio output variable:

Name	Туре	Default Value	Description
OutSignal	audio	N/A	<i>OutSignal</i> is the output signal from Wave , which maybe connected to another component or directed to an output gateway.

Table 87: Wave audio outputs

Name	Туре	Default Value	Description
Frequency	float32	1.0	 Frequency (in Hertz) of the wave generated by the waveform synthesizer. <i>Frequency</i> equals the number of oscillations per second for the given waveform. If no external variable is connected to <i>Frequency</i>, the scalar value is used. <i>Modifier</i>. multiply (*) <i>Modifier_default</i>. 0.0 <i>Range</i>: 0.0 - 1/2 × Sample Rate
FreqModDepth	float32	1.0	The frequency modulation depth value controls the effect of the frequency modulation signal:
			ActualFreq = Frequency × [1+ (FreqModDepth × FreqModSignal)]
			Usually falls in 0–1.0 range, when used in con- junction with unity gain modulation signal. If no external variable is connected to <i>FreqModDepth</i> , the scalar value is used as frequency modulation depth. To avoid unpredictable behavior, ensure modulation depth product and modulation signal does not span a range greater than -1.0 to +1.0. • <i>Modifier</i> : multiply (*) • <i>Modifier_default</i> : 0.0
Gain	float32	1.0	<i>Range</i> : 0.0-1.0 Amplitude gain of the waveform. If no external
Cull	noutor	1.0	variable is connected to <i>Gain</i> , scalar value is used.
			 <i>Modifier</i>. multiply (*) <i>Modifier_default</i>: 0.0 <i>Range</i>: 0.0-Inf
MarkSpaceInput	float32	1.0	 MarkSpaceInput controls the duration of the square wave, plus the side relative to the wave period (e.g., value of 0.5 means in a given period, the square wave output is +ve for 1/2 time and -ve for other half). If no external variable is connected to MarkSpaceInput, the scalar value is used. Modifier: multiply (*)
			 Modifier_default: 0.5 Range: 0.0-1.0

Table 88, "Wave control inputs" below lists and describes **Wave** control input variables:

Table 88: Wave control inputs

Table 89, "Wave internal parameters" below lists and describes **Wave** internal parameter variables:

Name	Туре	Default Value	Description
MarkSpaceUnits	width_units	DUTY_ CYCLE	This parameter is for the pulse and square inverse and defines the units for mark space input. The duty cycle range is $0-1$. The value can also be set in seconds.
Wavetype	waveshape	sine	The type of the generated waveform. Range includes the following: • Off • Sawtooth • Triangle • Sine • Square

Table 89: Wave internal parameters

3.0 AudiolO

The AudioIO components retrieve audio from the Highway 3D Service. Typically, these components directly link to one of the hardware components (e.g., ACU2). The AudioIO components include the following:

- Headphone3DOut
- HighwayOut
- SpeakerOut

These components are described in the Section 9.0, "Highway 3D Service" on page 159.

4.0 CommPanel

The following section details **CommPanel** and the objects within them. **CommPanel** components include the following:

- CommPanel4
- CommPanel8
- CommPanel16
- CommPanel32
- CommPanel8Stereo
- StereoCommPanel

4.1 CommPanel 4, 8, 16, 32

Summary: Simulation of a generic communication control panel that links a single operator with up to 32 assets. A facility is provided for separate control of input, output, and sidetone routing to and from assets. Assets are linked to **CommPanel** components using the intercom service.

Description: Although many assets may be connected, only a single channel needs to be described since the remainder are simply copies of the first. The basic concept of the **CommPanel** is the connection of an operator input, usually microphone, often through a **Vox** object, through a *press-to-talk (PTT)* gate and gain stage with an optional control input and scaling factor via a control selector switch (i.e., *InControl*) to a bidirectional intercom channel provided by the Telestra intercom service. Connect the intercom channel to various other audio object types. The intercom channel can also function as a basic intercom that provides standard intercom voice communication.

The input is active if *PTT* is set (either by default value or external control), and the input audio is tagged as Active_Tx. The return signal from the service passes to the operator via an output control selector via an optional receive gain control and scaling factor.

CommPanel determines how sidetone is computed for each asset, depending on the setting of the *SidetoneLocal* mask. If the bit corresponding to a particular channel is set, then the gain is computed locally within **CommPanel**. Otherwise, sidetone is a function of the externally connected asset. *SidetoneLocal* is usually used for intercom connections between operators, while remote sidetone is used for connections to radio objects. Remote sidetone causes operators sharing an asset to hear each other's sidetone, while *SidetoneLocal* causes other operators to hear only transmitted sidetone.

Normal operation for the *SideGainControl* byte is for it to be AND'ed with the *OutControl* byte. **CommPanel**can connect to Tx/Rx intercom service channels, typically voice signals to or from radios and intercom between crew, or Rx-only signals (e.g., Nav receivers, tone sources).

Default operation is full duplex. Asset connection duplex behavior always forces local behavior, so connections to a normal radio forces half-duplex operation. *OutGain* and scaling factor determines the overall receive signal gain. *SidetoneGain* and scaling factor determine the overall sidetone signal gain. The power connection state determines if the object is operational. All operation is disabled when *Power* is turned off (FALSE).

Table 90, "CommPanel audio input" below lists and describes the **CommPanel** audio input variable:

Name	Туре	Default Value	Description
InSignal	audio	N/A	Input audio signal that CommPanel trans- mits.

Table 90: CommPanel audio input

Table 91, "CommPanel audio outputs" below lists and describes **CommPanel** audio output variables:

Name	Туре	Default Value	Description
OutSignal	audio	N/A	Output audio signal generated by mixing all the received signals from the actively selec- ted IC buses.
SideSignal	audio	N/A	Sidetone audio signal generated by mixing all the received side tones from the actively selected IC buses.

Table 91: CommPanel audio outputs

Table 92, "CommPanel4, 8, 16, 32 control inputs" on page 83 lists and describes control inputs for **CommPanels 4**, **8**, **16**, and **32**:

Name	Туре	Default Value	Description
InControl	byte	255	 Selects the intercom buses to transmit the <i>InSignal</i> (i.e., bit mask). For example, a value of 1 transmits on <i>Sig1</i>, a value of 2 on <i>Sig2</i>, 4 on <i>Sig3</i>, 8 on <i>Sig4</i>, 16 on <i>Sig5</i>, and 255 on all buses. <i>Modifier</i>: and (&) <i>Modifier_default</i>: 255 <i>Range</i>: 0-255

Name	Туре	Default Value	Description
InGain	float32	1.0	 Scales the <i>InSignal</i> audio signal. <i>Modifier</i>. multiply (*) <i>Modifier_default</i>: 1.0 <i>Range</i>: 0.0-1.0
OutControl	byte	255	 Selects the buses to receive audio from (bit mask). For example, a value of 1 receives from Sig1, a value of 2 on Sig2, 4 on Sig3, 8 on Sig4, 16 on Sig5, and 255 on all buses. Modifier. and (&) Modifier_default: 255 Range: 0-255
OutGain	float32	1.0	 Volume control that scales the received OutSignal obtained after mixing the received signals from each intercom bus. Modifier. multiply (*) Modifier_default: 1.0 Range: 0.0-1.0
Power	Boolean	FALSE	 Controls the power of the CommPanel. Modifier: XOR Modifier_default: TRUE
PTT	Boolean	TRUE for Com- mPanel4; FALSE for oth- ers	 Controls CommPanel audio transmission. Modifier. XOR Modifier_default: FALSE for CommPanel4; TRUE for all others
SideControl	byte	255	 Selects the buses from which to receive the sidetone signal. For example, a value of 1 receives from Sig1, a value of 2 from Sig2, from Sig3, 8 from Sig4, 16 from Sig5, and 255 from all buses. Modifier: and (&) Modifier_default: 255 Range: 0-255
SidetoneGain	float32	0.6	Scales the side (i.e., sidetone) signal obtained after mixing the received sidetone from each IC bus.
Sig1–SigN	id	UNASSIGNED	Selects the intercom bus handle.

Name	Туре	Default Value	Description
Sig1_RxGain– SigN_RxGain	float32	1.0	Volume control that scales the signal received from each intercom bus prior to mixing.

Table 93, "CommPanel internal parameters" below lists and describes **CommPanel** internal parameter variables:

Name	Туре	Default Value	Description
SideGainControl	byte	255	Selects which side tones are affected by the CommPanel's received signal gains. When the bit is high, the sidetone volume for the intercom bus is multiplied by the appropriate <i>SigN_ RxGain.</i> Also when the bit is high, the <i>SideControl</i> value for the intercom bus becomes the logical AND of <i>SideControl</i> and <i>OutControl</i> .
SidetoneLocal	byte	0	Selects which side tones are generated locally instead of remotely. If more than one Com- mPanel is sharing the same intercom bus, this control determines if the sidetone is sent to the other panels.

Table 93: CommPanel internal parameters

4.2 CommPanel8Stereo

Summary: Simulation of a stereo communication control panel that links a single operator with up to eight assets. A facility is provided for separate control of input, output, and sidetone routing to and from assets. Assets are linked to **CommPanel** using the intercom service. **CommPanel8Stereo** has separate controls for left and right output and sidetone signals.

Description: This is a generic **CommPanel** component with stereo function. For more information, go to Section 4.0, "CommPanel" on page 80.

Table 94, "CommPanel8Stereo audio input" below describes the **CommPanel8Stereo** audio input variable:

Name	Туре	Default Value	Description
InSignal	audio	N/A	The input audio signal CommPanel trans- mits.

Table	94:	Comm	Panel8	Stereo	audio	input
						r

Table 95, "CommPanel8Stereo audio outputs" below lists and describes **CommPanel8Stereo** audio output variables:

Name	Туре	Default Value	Description
OutSignalL	audio	N/A	Left output audio signal generated by mixing all the received signals from the actively selec- ted IC buses.
OutSignalR	audio	N/A	Right output audio signal generated by mixing all the received signals from the actively selec- ted IC buses.
SideSignalL	audio	N/A	Left sidetone audio signal generated by mix- ing all the received sidetone signals from the actively selected IC buses.
SideSignalR	audio	N/A	Right sidetone audio signal generated by mix- ing all the received sidetone signals from the actively selected IC buses.

Table 95: CommPanel8Stereo audio outputs

Table 96, "CommPanel8Stereo control inputs" on the facing page lists and describes **Com-mPanel8Stereo** control input variables:

Name	Туре	Default Value	Description
Power	Boolean	TRUE	Controls CommPanel power.
PTT	Boolean	TRUE	Controls CommPanel audio transmission.
InGain	float32	1.0	Scales InSignal audio signal.
OutGain	float32	1.0	Mixes received signals from each intercom bus and scales received <i>OutSignal</i> .
SidetoneGain	float32	0.600	Mixes received sidetone from each IC bus, and scales <i>SideSignal</i> .
InControl	byte	255	Selects intercom buses to transmit <i>InSignal</i> (i.e., bit mask). Value 1 transmits on <i>Sig1</i> , value 2 on <i>Sig2</i> , 4 on <i>Sig3</i> , 8 on <i>Sig4</i> , 16 on <i>Sig5</i> , and 255 on all buses.
OutControlL	byte	255	Selects buses receiving Rx signals routed to <i>OutSignalL</i> Value 1 receives on <i>Sig1</i> , value 2 on <i>Sig2</i> , 4 on <i>Sig3</i> , 8 on <i>Sig4</i> , 16 on <i>Sig5</i> , and 255 on all buses.

Name	Туре	Default Value	Description
OutControlR	byte	255	Selects buses receiving Rx signals routed to the <i>OutSignalR</i> . Value 1 receives on <i>Sig1</i> , value 2 on <i>Sig2</i> , 4 on <i>Sig3</i> , 8 on <i>Sig4</i> , 16 on <i>Sig5</i> , and 255 on all buses.
SideControlL	byte	255	Selects buses receiving sidetone signal routed to <i>SideSignalL</i> (e.g., value 1 receives on <i>Sig1</i> , value 2 on <i>Sig2</i> , 4 on <i>Sig3</i> , 8 on <i>Sig4</i> , 16 on <i>Sig5</i> , and 255 on all buses).
SideControlR	byte	255	Selects buses receiving sidetone signal routed to <i>SideSignalR</i> . Value 1 receives on <i>Sig1</i> , value 2 on <i>Sig2</i> , 4 on <i>Sig3</i> , 8 on <i>Sig4</i> , 16 on <i>Sig5</i> , and 255 on all buses.
SidetoneLocal	byte	0	Selects which sidetone signals are gen- erated locally vs. remotely. If more than one CommPanel is sharing the same intercom bus, this control determines if other panels receive sidetone.
SideGainControl	byte	255	Selects which sidetone signals are affected by the CommPanel's received signal gains. When the bit is high, the sidetone volume for intercom bus is multiplied by the appropriate <i>SigN_RxGainL</i> or <i>SigN_RxGainR</i> , and by <i>OutGain</i> bytes, which is masked by <i>OutCon-</i> <i>trol</i> bytes.
Sig1_RxGainL–Sig8_ RxGainL	float32	1.0	The volume control scaling signal received from each intercom bus before mixing into left output signal.
Sig1_RxGainR–Sig8_ RxGainR	float32	1.0	The volume control scaling signal received from each intercom bus before mixing into the right output signal.
Sig1–Sig8	id	UNASSIGNED	Selects the intercom bus handle.

4.3 StereoCommPanel

ASTi created StereoCommPanel for a specific program. Contact ASTi for details.

Table 97, "StereoCommPanel audio input" below lists and describes the **StereoCommPanel** audio input variable:

Name	Туре	Default Value	Description
InSignal	audio	N/A	Input audio signal that the CommPanel transmits.

Table 97: StereoCommPanel audio input

Table 98, "StereoCommPanel audio outputs" below lists and describes **StereoCommPanel** audio output variables:

Name	Туре	Default Value	Description
OutSignalL	audio	N/A	Left output audio signal generated by mixing all the received signals from the actively selected IC buses.
OutSignalR	audio	N/A	Right output audio signal generated by mixing all the received signals from the actively selected IC buses.
OutSignalM	audio	N/A	Monitor output audio signal generated by mixing all the received signals from the actively selected IC buses.
SideSignalL	audio	N/A	Left sidetone audio signal generated by mixing all the received sidetone signals from the actively selected IC buses.
SideSignalR	audio	N/A	Right sidetone audio signal generated by mixing all the received sidetone signals from the actively selec- ted IC buses.
SideSignalM	audio	N/A	Monitor sidetone audio signal generated by mixing all the received sidetone signals from the actively selec- ted IC buses.

Table 98: StereoCommPanel audio outputs

Table 99, "StereoCommPanel control inputs" on page 89 lists and describes **StereoCommPanel** control input variables:

Name	Туре	Default Value	Description
InControlL	byte	255	Selects intercom buses to transmit <i>InSignal</i> (i.e., bit mask). Value 1 transmits on <i>Sig1</i> , value 2 on <i>Sig2</i> , value 4 on <i>Sig3</i> , value 8 on <i>Sig4</i> , 255 on all IC buses. Sidetone feeds to <i>SideSignalL</i> .
InControlR	byte	255	Selects intercom buses to transmit <i>InSignal</i> (i.e., bit mask). Value 1 transmits on <i>Sig1</i> , value 2 on <i>Sig2</i> , value 4 on <i>Sig3</i> , value 8 on <i>Sig4</i> , 255 on all IC buses. Sidetone feeds to <i>SideSignalR</i> .
InGain	float32	1.0	Scales InSignal audio signal.
			 <i>Modifier</i>. multiply (*) <i>Modifier_default</i>: 1.0 <i>Range</i>: 0.0-1.0
OutControlL	byte	255	Selects intercom buses to receive from (i.e., bit mask). Value 1 receives from <i>Sig1</i> , 2 from <i>Sig2</i> , 4 from <i>Sig3</i> , 8 on <i>Sig4</i> , 255 from all IC buses. Mixed audio feeds to <i>OutSignalL</i> .
OutControlR	byte	255	Selects intercom buses to receive from (i.e., bit mask). Value 1 receives from <i>Sig1</i> , 2 from <i>Sig2</i> , 3 from <i>Sig4</i> , 8 from <i>Sig4</i> , 255 from all IC buses. Mixed audio feeds to <i>OutSignalR</i> .
OutControlM	byte	255	Selects intercom buses to receive from (i.e., bit mask). Value 1 receives from <i>Sig1</i> , 2 from <i>Sig2</i> , 4 from <i>Sig3</i> , 8 from <i>Sig4</i> , 255 from all IC buses. Mixed audio feeds to <i>OutSignalM</i> .
OutGainL	float32	1.0	 Scales the received <i>OutSignalL</i> signal obtained after mixing the received signals from each IC bus. <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 1.0 <i>Range</i>: 0.0-1.0
OutGainR	float32	1.0	 Scales the received <i>OutSignalR</i> signal after mixing the received signals from each IC bus. <i>Modifier</i>. multiply (*) <i>Modifier_default</i>: 1.0 <i>Range</i>: 0.0-1.0

Name	Туре	Default Value	Description
OutGainM	float32	1.0	Scales the received <i>OutSignalM</i> signal after mixing the received signals from each IC bus.
			 <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 1.0 <i>Range</i>: 0.0-1.0
Power	Boolean	FALSE	Controls the power bus of the CommPanel . • <i>Modifier</i> : XOR
			Modifier_default: TRUE
PTTL	Boolean	FALSE	Controls CommPanel audio transmission.
			 Modifier. XOR Modifier_default: TRUE
PTTR	Boolean	FALSE	Controls CommPanel audio transmission.
			 Modifier. XOR Modifier_default: TRUE
SideControlL	byte	255	Selects the intercom buses to receive side tones from (i.e., bit mask). Value 1 receives from <i>Sig1</i> , 2 from <i>Sig2</i> , 4 from <i>Sig3</i> , 8 from <i>Sig4</i> , 255 from all IC buses. Mixed audio feeds to <i>SideSignalL</i> .
SideControlR	byte	255	Selects intercom buses to receive side tones from (i.e., bit mask). Value 1 receives from <i>Sig1</i> , 2 from <i>Sig2</i> , 4 from <i>Sig3</i> , 8 from <i>Sig4</i> , 255 from all IC buses. Mixed audio feeds to <i>SideSignalR</i> .
SideControlM	byte	255	Selects intercom buses to receive side tones from (i.e., bit mask). Value 1 receives from <i>Sig1</i> , 2 from <i>Sig2</i> , 4 from <i>Sig3</i> , 8 from <i>Sig4</i> , 255 from all IC buses. Mixed audio feeds to <i>SideSignalM</i> .
SidetoneGainL	float32	1.0	Scales sidetone signal from SideSignalL audio:
			 Modifier. multiply (*) Modifier_default: 0.6 Range: 0.0-1.0
SidetoneGainR	float32	1.0	Scales sidetone signal for SideSignalR audio.
			 <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 0.6 <i>Range</i>: 0.0-1.0

Name	Туре	Default Value	Description
SidetoneGainM	float32	1.0	Scales sidetone signal for SideSignalM audio.
			 <i>Modifier</i>. multiply (*) <i>Modifier_default</i>: 0.6 <i>Range</i>: 0.0-1.0
Sig1_RxGainL– Sig8_RxGainL	float32	1.0	Scales received signals from each IC bus for <i>OutSignalL</i> audio.
Sig1_RxGainR– Sig8_RxGainR	float32	1.0	Scales received signals each IC bus for <i>OutSig-nalR</i> audio.
Sig1_RxGainM– Sig8_RxGainM	float32	1.0	Scales received signals from each IC bus for <i>OutSignalM</i> audio.

Table 99: StereoCommPanel control inputs

Table 100, "StereoCommPanel internal parameters" below lists and describes **StereoCommPanel** internal parameter variables:

Name	Туре	Default Value	Description
SideGainControlL	byte	255	Selects which left side tones are affected by the CommPanel's received signal gains.
SideGainControlR	byte	255	Selects which right side tones are affected by the CommPanel's received signal gains.
SideGainControlM	byte	255	Selects which right side tones are affected by the CommPanel's received signal gains.
SidetoneLocalL	byte	0	Selects which left side tones are affected by the CommPanel's received signal gains.
SidetoneLocalR	byte	0	Selects which right side tones are affected by the CommPanel's received signal gains.
SidetoneLocalM	byte	0	Selects which monitor side tones are affected by the CommPanel's received signal gains.

Table 100: StereoCommPanel internal parameters

5.0 Control

Control components provide the logic for driving the functions of the objects in the model. This section documents the following **Control** components:

- BitToByte
- ByteToBit
- ByteMerger
- ByteSplitter
- Counter
- Delay
- Ident
- Incrementer
- IntCompare
- IntFlexTable
- IntTable
- Latch
- LogicTable
- MathFunction
- NumToString
- PassThrough

5.1 BitToByte

Summary: BitToByte combines up to eight Boolean controls into a single byte-wide value.

Description: The first input (*Input0*) becomes the least significant bit, while the eighth input (*Input7*) becomes the most significant bit. Each Boolean control may be inverted at the component input. *Gain* can function as a multiplier for the output byte if **BitToByte** operates as another conversion type function.

Table 101, "BitToByte control inputs" below lists and describes **BitToByte** control input variables:

Name	Туре	Default Value	Description
Gain	float32	1.0	 Overall gain applied to the output result. If <i>Gain</i> is blank, the scaler functions as <i>Gain</i>. <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 1.0
<i>Input0</i> –Input7	Boolean	FALSE	 Controls Boolean values that assembles into an 8-bit byte. <i>Modifier</i>: XOR <i>Modifier_default</i>: FALSE

Table 101: BitToByte control inputs

Table 102, "BitToByte control output" below lists and describes the **BitToByte** control output variable:

Name	Туре	Default Value	Description
Output	float32	0.0	Normally, an integer value equaling the sum of the binary weighting of the bits input to the component. This value may function as a floating point number if <i>Gain</i> is a floating point value.

Table 102: BitToByte control output

5.2 ByteToBit

Summary: ByteToBit splits an input byte into its eight, individual bit values.

Description: ByteToBit converts a single input byte into its eight, individual bit values.

Table 103, "ByteToBit control output" below lists and describes the **ByteToBit** control output variable:

Name	Туре	Default Value	Description
BitOut0– BitOut7	Boolean	FALSE	The eight individual bit outputs resulting from the input byte word. <i>BitOut0</i> is the least significant, and <i>BitOut7</i> is the most significant.

5.3 ByteMerger

Summary: ByteMerger accepts four uint8 inputs, interprets them as a multibyte value (i.e., int16, uint16, int32, uint32, or float32), and outputs the result as a float64.

Description: ByteMerger reconstructs an integer or float from a series of bytes. The input type specifies how the input byte should integrate. For example, if reconstructing a two-byte signed integer, link the least significant byte to *In0* and the most significant byte to *In1*.

Figure 17, "ByteMerger pinout" below shows the ByteMerger pinout:

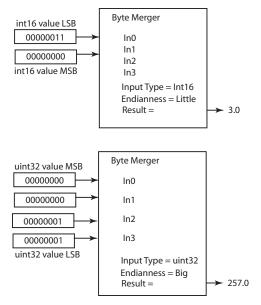


Figure 17: ByteMerger pinout

Table 104, "ByteMerger control inputs" below lists and describes **ByteMerger** control input variables:

Name	Туре	Default Value	Description
In0	uint8	0	The first byte of the multibyte value.
In1	uint8	0	The second byte of the multibyte value.
In2	uint8	0	The third byte of the multibyte value.
In3	uint8	0	The fourth byte of the multibyte value.

Table 104: ByteMerger control inputs

Table 105, "ByteMerger control outputs" below lists and describes **ByteMerger** control output variables:

Name	Туре	Default Value	Description
Endianness	endianness	LITTLE	The input byte order. If little endian, then the least sig- nificant byte links to <i>In0</i> . If big endian, then the most significant byte links to <i>In0</i> .
InputType	types	UINT_32	Specifies how the input bytes should be interpreted.
Result	float64	0.0	The result of merging the input bytes based on endi- anness and input type.

Table 105: ByteMerger control outputs

5.4 ByteSplitter

Summary: **ByteSplitter** decomposes an input value into byte-sized chunks, allowing for data type conversion at either end.

Description: When **ByteSplitter** accepts an integer or float type, you can choose the specific input type. If you choose an integer type, **ByteSplitter** only uses the value from *InInt*. If a float type is selected, **ByteSplitter** only uses the value from *InFloat*. The unused value in either case is set to 0. *InInt* and *InFloat* are constrained to **uint64** and **float64** respectively. Depending on input type (e.g., **int64** linked to the **uint64**), the result might be misrepresented. Internally, the component is aware of the actual representation of the input data, as specified by *InputType*.

Figure 18, "ByteSplitter pinout" below shows the ByteSplitter pinout:

Input: 257 (float64)	Byte Splitter		
01000000 01110000 00010000	Input Type = FLOAT_64 Output Type = UINT_32 Endianness = Big		Output: 257 uint32)
00000000	Out0	≻ 0 [00000000
00000000	Out1	-≻0 [00000000
0000000	Out2	→ 1 [00000001
0000000	Out3	→1	00000001
		1	
Input: 42 (float32)	Byte Splitter Input Type = FLOAT_32 Output Type = FLOAT_64 Endianness = Big		Output: 42 (float64)
(float32)	Input Type = FLOAT_32 Output Type = FLOAT_64	→64	
(float32) ->	Input Type = FLOAT_32 Output Type = FLOAT_64 Endianness = Big	→64 →69	(float64)
(float32)	Input Type = FLOAT_32 Output Type = FLOAT_64 Endianness = Big Out0		(float64) 01000000
(float32) 01000010 00101000 00000000	Input Type = FLOAT_32 Output Type = FLOAT_64 Endianness = Big Out0 Out1	→69	(float64) 01000000 01000101
(float32) 01000010 00101000 00000000	Input Type = FLOAT_32 Output Type = FLOAT_64 Endianness = Big Out0 Out1 Out2	→69 →0	(float64) 01000000 01000101 00000000
(float32) 01000010 00101000 00000000	Input Type = FLOAT_32 Output Type = FLOAT_64 Endianness = Big Out0 Out1 Out2 Out3	→69 →0 →0	(float64) 01000000 01000101 00000000 00000000
(float32) 01000010 00101000 00000000	Input Type = FLOAT_32 Output Type = FLOAT_64 Endianness = Big Out0 Out1 Out2 Out3 Out4	 →69 →0 →0 →0 →0 	(float64) 01000000 01000101 00000000 00000000 000000

Figure 18: ByteSplitter pinout

Table 106, "ByteSplitter control inputs" below lists and describes **ByteSplitter** control input variables:

Name	Туре	Default Value	Description
InInt	any integer type	0	Input port for integer-typed inputs.
InFloat	any float type	0	Input port for float-typed inputs

Table 106: ByteSplitter control inputs

Table 107, "ByteSplitter control output" below lists and describes the **ByteSplitter** control output variable:

Name	Туре	Default Value	Description
Out0–Out7	uint8	0	The output of the data in byte-sized chunks. The size of the data type determines how many output ports are used.

Table 107: ByteSplitter control output

Table 108, "ByteSplitter internal parameters" below lists and describes **ByteSplitter** internal parameter variables:

Name	Туре	Default Value	Description
Endianness	endianness	LITTLE	Sets the endianness of the output data. Tog- gling this variable reorders the data in the <i>Out</i> array.
InputType	types2	INT_16	Selects which input port (i.e., <i>InInt</i> or <i>InFloat</i>) to use and lets the component know how to interpret the bit-level representation of the data coming in on the input port. This variable allows you to input any integer or float type into the input ports.
OutputType	types2	INT_16	Allows you to convert the input value to a dif- ferent data type before outputting the data in byte-sized chunks.

Table 108: ByteSplitter internal parameters

5.5 Counter

Summary: Counter provides a time-based, general-purpose event or continuous ramping function. In single-shot mode, **Counter** can provide an externally triggered function lookup suitable for amplitude or frequency control of dynamically generated audio sources for sound effects, such as explosions or touchdown thumps that play once for a fixed time.

When set to *Continuous* mode, **Counter** can provide a table-driven modulation of waveforms, where the modulation rate is slower than the overall model execution rate (i.e., 0 to 100 Hertz). **Counter** also provides a generic timer function for control logic within the model.

Description: The operation of Counter is as follows:

- 1. When triggered, **Counter** counts from *RangeStart* to *RangeEnd* over the period of time specified by *Duration*.
- 2. The current count value is passed as input X into an f(x) function.
- 3. The output of **Counter** is the function result.

As described above, *RangeStart* and *RangeEnd* define the counting sequence. If these parameters are set to the same value, **Counter** outputs 0.0. If *RangeEnd* is less than *RangeStart*, **Counter** counts down. If the *RangeEnd* is greater than the *RangeStart*, **Counter** counts up. When **Counter** is not counting, its value is 0.0.

Note: Counter's output may not necessarily be 0.0 when Counter is 0.0. Counter's output depends on the specified function.

If *Duration* is less than zero, **Counter** uses a value of zero for **Counter** duration.

When *Continuous* is **TRUE**, **Counter** continuously cycles through the count sequence. When it reaches *RangeEnd*, it waits for the period of time specified by **Delay**. It then begins the count sequence again. If *Continuous* is **FALSE**, **Counter** resets to 0.0 when it reaches the end of the sequence.

When *CountAll* is **TRUE**, **Counter** proceeds to the end of the count sequence, even if *Trig-ger* is removed. At the end of the sequence, **Counter** resets to 0.0. If this variable is **FALSE**, **Counter** resets to 0.0 as soon as *Trigger* expires.

Table 109, "Counter control inputs" below lists and describes **Counter** control input variables:

Name	Туре	Default Value	Description
Delay	float32	1.0	The length of time in seconds between counting cycles when <i>Continuous</i> is TRUE .
			 <i>Modifier</i>. multiply (*) <i>Modifier_default</i>. 0.0
Duration	float32	1.0	The length of time in seconds for Counter to go from <i>RangeStart</i> to <i>RangeEnd</i> .
			Modifier: multiply (*)
Pause	Boolean	FALSE	Counter pauses at its current value when <i>Pause</i> is TRUE .
			Modifier: XOR
Trigger	Boolean	FALSE	 TRUE initiates counting. <i>Continuous</i> determines how Counter behaves when <i>Trigger</i> is FALSE. <i>Modifier</i>: XOR

Table 109: Counter control inputs

Table 110, "Counter control output" below lists and describes the **Counter** control output variable:

Name	Туре	Default Value	Description
Result	float32	0.0	Displays the final Counter result.

Table 110: Counter control output

Table 111, "Counter internal parameters" below lists and describes **Counter** internal parameter variables:

Name	Туре	Default Value	Description
Continuous	Boolean	FALSE	<i>Continuous</i> determines Counter behavior when the <i>Trigger</i> is TRUE . If TRUE , Counter continually steps through the counting sequence. When it reaches <i>RangeEnd</i> , it returns to <i>RangeStart</i> and begins the counting sequence again. If FALSE , Counter only does one pass through the counting sequence. It stops counting when it reaches <i>RangeEnd</i> .
CountAll	Boolean	FALSE	Determines Counter behavior when <i>Trigger</i> trans- itions from TRUE to FALSE . If TRUE , Counter con- tinues counting until it reaches the <i>RangeEnd</i> value when <i>Trigger</i> goes FALSE . If FALSE , Counter imme- diately stops counting when <i>Trigger</i> goes FALSE .
Function	function	<select></select>	 This service handle determines the final output based on the current Counter value. <i>Function</i> may be of any of the types supported by <i>Function</i> service. The most commonly used Counter functions are <i>Table</i> and <i>Comparator</i>. <i>Modifier</i>: multiply (*)
FunctionGain	float32	1.0	Modifier_default: 1.0 The overall gain applied to the <i>Function</i> output result.
RangeEnd	float32	1.0	Specifies the ending value of the Counter sequence. When triggered, Counter counts from <i>RangeStart</i> to <i>RangeEnd</i> .
RangeStart	float32	0.0	Specifies the starting value of the Counter sequence. When triggered, Counter counts from <i>RangeStart</i> to <i>RangeEnd</i> .
UpDown	Boolean	FALSE	Controls if Counter should count from <i>RangeStart</i> to <i>RangeEnd</i> then back to <i>RangeStart</i> within the <i>Duration</i> period. This feature is useful for inserting windup and wind down effects to dynamically generated aural cue sounds.

Table 111: Counter internal parameters

5.6 Delay

Summary: Postpones the input control value.

Description: **Delay** postpone a value by the specified number of k-frames. Each k-frame is 9.333 milliseconds (msec). The maximum settable delay is 750 k-frames, or approximately 7 seconds. **Delay** postpones control data (i.e., host data) within the model and may be useful for creating certain state logic.

Table 112, "Delay control inputs" below lists and describes **Delay** control input variables:

Name	Туре	Default Value	Description
DelayKFrames	int32	0	The number of k-frames to delay the value. Each k- frame is 9.333 msec. Maximum setting is 750 k- frames or 7 seconds.
Enable	Boolean	FALSE	When TRUE , the input value is delayed. When FALSE , the input value is not delayed.
ValueIn	float32	0.0	An input value from another component in the model. This value is delayed and sent to <i>ValueOut</i> .

Table 112: Delay control inputs

Table 113, "Delay control output" below lists and describes the **Delay** control output variable:

Name	Туре	Default Value	Description
ValueOut	float32	0.0	The delayed value, which is based on <i>ValueIn</i> and <i>DelayKFrames</i> .

Table 113: Delay control output

Table 114, "Delay internal parameter" below lists and describes the **Delay** internal parameter variable:

Name	Туре	Default Value	Description
DelayMsec	float32	0	The k-frame delay expressed in milliseconds.

Table 114: Delay internal parameter

5.7 Ident

Summary: **Ident**, much like **MorseKeyer**, provides an interface between the *HostIn* packet and the model for any four-character ASCII string identifier sequence.

Description: **Ident** decodes the incoming zero-terminated ASCII string into the correct sequence of on and off pulses required for ident code communication. In addition to the usual letters and numbers defined in Morse code, it also includes the characters (* and -) to represent individual dot and dash combinations. Offset to input variable from beginning of Ethernet packet in bytes.

Name	Туре	Default Value	Description
CarrierMode	Boolean	FALSE	Provides control of carrier wave state gaps in the identifier. When TRUE , the identifier has spaces appended to the front and back of the Morse string. The carrier wave is on when not keying Morse string.
Ident	ident	N/A	Connection to feed <i>Ident</i> into the component.
Inverted	Boolean	FALSE	Provides local logic inversion of keying.
RepeatRate	float32	1	Repeat period in seconds for retransmission of Morse code string.<i>Modifier</i>. 5
WordRate	uint8	1	 Determines the rate at which the word is played. Units are in dots per second. The faster the rate, the higher the number. <i>Modifier</i>. 8

Table 115, "Ident control inputs" below lists and describes **Ident** control input variables:

Table 115: Ident control inputs

Table 116, "Ident control output" below lists and describes the Ident control output variable:

Name	Туре	Default Value	Description
Result	Boolean	FALSE	Output of the Morse code toggle tone.

Table 116: Ident control output

5.8 Incrementer

Summary: Tracks the number of times an event has occurred.

Description: Incrementer adds one to an output count when the trigger transitions, which can track basic state information. The output reverts to zero on model load or when *Reset* triggers. *ResetAtValue* and *TimeToReset* can automatically reset the output.

Table 117, "Incrementer control inputs and output" below lists and describes **Incrementer** control input and output variables:

Name	Туре	Default Value	Description	
Control Inputs				
Reset	Boolean	FALSE	Resets the output count to zero when TRUE .	
Trigger	int32	0	Increments the result by 1 when transitioning to a higher or lower number.	
Control Output				
Result	float32	0.0	The output count increments by 1 when <i>Trigger</i> transitions.	

Table 117: Incrementer control inputs and output

Table 118, "Incrementer internal parameters" below lists and describes **Incrementer** internal parameters:

Name	Туре	Default Value	Description
ResetAtValue	uint32	0	A ceiling for the result. When <i>Result</i> reaches <i>ResetAtValue</i> , it immediately sets to zero. If <i>ResetAtValue</i> remains at 0, then <i>Result</i> counts up indefinitely.
TimeToReset	float32	0.0	A timer in seconds that begins every time <i>Result</i> increments. If the time expires before the next increment, the <i>Result</i> resets to 0. If <i>TimeToReset</i> is 0, then no timed reset occurs.
TriggerType	trigger_ type	RISING_ EDGE	Determines when the count should increment. If set to RISING_EDGE , <i>Result</i> increments when the trigger increases (0 to 1). If set to FALLING_ EDGE , <i>Result</i> increments when <i>Trigger</i> decreases (1 to 0). If ON_TRANSITION , <i>Result</i> increments in either case.
IncrementerValue	uint32	0	Incrementer value presented to function.

5.9 IntCompare

Summary: IntCompare checks eight input values and compares them against a range of integers. Each integer is compared against a different range. The result of all eight comparisons outputs as a single byte bit mask and a Boolean value.

Description: IntCompare compares multiple values at the same time. For example, compare a single frequency against multiple frequency bands to determine if you should change a radio's mode. The component replaces many **IntTables** or **In-Range MathFunctions**. Each input integer (i.e., *InputA–InputH*) is compared against its own range (i.e., *RangeA–RangeH*). *Result* is **TRUE** when all controlled inputs are within range. *Output* also provides a bit mask so you can use the result of all eight comparisons in the model. The ranges are all-inclusive.

Table 119, "IntCompare control inputs" below lists and describes **IntCompare** control input variables:

Name	Туре	Default Value	Description
InputA–InputH	uint32	0	Compared against its matching range. For example, <i>InputA</i> is compared against <i>RangeA</i> , and <i>InputB</i> is compared against <i>RangeB</i> . The range for each integer is inclusive. If the input value is within range, it sets the corresponding bit in <i>Output</i> to 1. For example, if <i>InputA</i> is in range, the least significant bit of <i>Output</i> is 1; if <i>InputA</i> is out of range, it is 0. <i>InputB's</i> comparison is the second bit, and <i>InputH</i> is the most significant bit. • <i>Modifier</i> . add (+) • <i>Modifier_Default</i> . 0
ControlByte	uint8	255	 A bit mask that determines which input integers are used for <i>Result</i> and <i>Output</i>. When equal to 255, all eight inputs must be in range for <i>Result</i> to be TRUE. If equal to 1, IntCompare only uses <i>InputA</i> and <i>RangeA</i>. <i>Modifier</i>. and (&) <i>Modifier_Default</i>: 255

Table 119: IntCompare control inputs

Table 120, "IntCompare control outputs" below lists and describes **IntCompare** control output variables:

Name	Туре	Default Value	Description
Output	byte	255	A bit mask that contains the result of all eight comparisons. Each <i>Output</i> bit corresponds to one of the eight inputs. If the bit is 1, then the input is within range. If the bit is 0, then the input is out of range. For example, if <i>InputA</i> is within <i>RangeA</i> but the other seven inputs are out of range, <i>Output</i> equals 1.
Result	Boolean	TRUE	The master result of all comparisons. All con- trolled integers must be in range for <i>Result</i> to be TRUE . If <i>ControlByte</i> less than 255, only the selected integers must be in range for <i>Result</i> to be TRUE .

Table 120: IntCompare control outputs

Table 121, "IntCompare internal parameters" below lists and describes **IntCompare** internal parameter variables:

Name	Туре	Default Value	Description
RangeA–RangeH			
RangeLower	uint32	0	The lower end of each range comparison. If the input equals or is greater than <i>RangeLower</i> but less than <i>RangeUpper</i> , the comparison is in range. Each input only looks at its corresponding <i>RangeLower</i> . <i>InputA</i> looks at <i>RangeA</i> , <i>InputB</i> looks at <i>RangeB</i> , and so on.
RangeUpper	uint32	0	The upper end of each range comparison. If the input equals or is less than <i>RangeUpper</i> but greater than <i>RangeLower</i> , the comparison is in range. Each input only looks at the corresponding <i>RangeUpper</i> . <i>InputA</i> looks at <i>RangeA</i> , <i>InputB</i> looks at <i>RangeB</i> , etc.

 Table 121: IntCompare internal parameters

5.10 IntFlexTable

Summary: **IntFlexTable** provides a simple lookup function for integer values. It is similar to **IntTable** with the added feature of having the lookup values as control inputs rather than internal parameters.

Description: IntFlexTable receives an integer input from an external connection. If this input is between 1 and 16, the result is the corresponding lookup value. For example, if *Index* is 7, *Lookup7* is used. If *Index* is outside the range, the result value is set in *IndexNot1–16*. You can set each lookup value from an external connection. Output then takes the resulting lookup value, adds the *ResultOffset* to it, and multiplies it by *Gain*.

Table 122, "IntFlexTable control inputs, output, and internal parameter" below lists and describes **IntFlexTable** control input, output, and internal parameter variables:

Name	Туре	Default Value	Description	
Control Input	·			
Gain	float32	1.0	Overall gain applied to the output result.	
Index	int32	0	Index value used for table lookup. For example, when <i>Index</i> = 7, <i>Lookup7</i> is used.	
Lookup1– Lookup16	int32	0	 Corresponding entries for when <i>Index</i> is between 1 and 16 inclusive. If <i>Index</i> equals 7, IntFlexTable uses <i>Lookup7</i>. <i>Modifier</i>. add (+) <i>Modifier_default</i>: 0 	
Control Outpu	t			
Output	float32	0	Final output value of IntFlexTable.	
			Output = Lookup + ResultOffset × Gain.	
Internal Parameter				
IndexNot1– IndexNot16	int32	0	This value is used when <i>Index</i> is less than 1 or greater than 16.	

Table 122: IntFlexTable control inputs, output, and internal parameter

5.11 IntTable

Summary: Integer Table (IntTable) provides a simple lookup function for integer values. You can use **IntTable** to play a sound file index or receive/transmit selections in a communication panel.

Description: IntTable receives an integer input from an external connection and drives an index to add an offset. If the derived index is between 1 and 16, the result is the corresponding entry in the lookup table. If the derived index is outside of this range, the result is the *OutofRange* value. *Lookup_Table* values are hard-coded as internal parameters.

IntTable then adds an offset to the result and multiplies that value by a gain multiplier. An external connection may drive *ResultOffset*. This input provides a means to effectively change all of the lookup table values by a fixed amount dynamically. This functionality is useful if the lookup value set varies under certain logic conditions. Finally, **IntTable** applies a gain multiplier to derive the output value.

Table 123, "IntTable control inputs" below lists and describes **IntTable** control input variables:

Name	Туре	Default Value	Description
Gain	float32	1.0	The overall gain applied to the <i>Output</i> result. If the gain connection is blank, then the scaler is the <i>Gain</i> value.
			 <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 1.0
Index	int32	0	<i>Index</i> used for table lookup. If no external variable is connected to <i>Index</i> , <i>ResultOffset</i> is used.
			 Modifier. add (+) Modifier_default: 0
ResultOffset	int32	0	An offset value added to the value in the table. If no external variable is connected to <i>ResultOffset</i> , IntT-able uses the modifier value.
			 Modifier. add (+) Modifier_default: 0

Table 123: IntTable control inputs

Table 124, "IntTable control output" below lists and describes the **IntTable** control output variables:

Name	Туре	Default Value	Description
Output	float32	0.0	Final output value from IntTable .

Table 124: IntTable control output

Table 125, "IntTable internal parameters" below lists and describes **IntTable** internal parameter variables:

Name	Туре	Default Value	Description
IndexNot1– IndexNot16	int32	0	Lookup table value for result index less than 1 and greater than 16.
Lookup_Table	int32[16]	1–16	The lookup table value for result <i>Index1–Index16</i> .

Table 125: IntTable internal parameters

5.12 Latch

Summary: Latch holds an input value for a specified time or indefinitely.

Description: Latch holds a control value inside the model for other components to use. As a result, you can store an input that varies over time and send it elsewhere in the model.

Latch is ideal for sampling a rapidly changing control value such as the **Random Number MathFunction**, or for building state logic into the model in conjunction with **Incrementer**. Latch reads the *Input* value and sets it as the *Output* value.

The component then hold that value for the duration of *LatchTime*. After *LatchTime* expires, a new *Input* value is taken and used as the *Output* again. Alternatively, setting *LatchTime* to **0.0** holds the *Input* value indefinitely once *Enable* is **TRUE**.

Table 126, "Latch control inputs, output, and internal parameter" below lists and describes **Latch** control input, control output, and internal parameters variables:

Name	Туре	Default Value	Description
Control Inputs			
Enable	Boolean	FALSE	Causes Latch to hold and store the current input value. When FALSE, the output is equal to the input. When TRUE, it holds the <i>Input</i> value as the <i>Output</i> value, even if <i>Input</i> changes state. If <i>LatchTime</i> is 0.0, the <i>Output</i> does not change until <i>Enable</i> is FALSE. • <i>Modifier</i> : XOR • <i>Modifier_default</i> : FALSE
Input	float32	1.0	 The control value that is latched and held. <i>Enable</i> must be TRUE to store the <i>Input</i>. <i>Modifier</i>. multiply (*) <i>Modifier_default</i>. 1.0
Control Output	:		
Output	float32	1.0	The result of Latch. If <i>Enable</i> is FALSE , this value is equal to the <i>Input</i> . Otherwise, <i>Output</i> is equal to the value of <i>Input</i> at the time that <i>Enable</i> is TRUE . If <i>LatchTime</i> is not zero and <i>Enable</i> is TRUE , <i>Output</i> latches again after the duration of <i>LatchTime</i> . This continues to happen as long as <i>Enable</i> is TRUE .
Internal Param	eter		
LatchTime	float32	0.0	The time, in seconds, for Latch to hold the <i>Input</i> value before latching a new value. If <i>Enable</i> goes FALSE before <i>LatchTime</i> is complete, the <i>Output</i> reverts to <i>Input</i> . A <i>LatchTime</i> of 0 causes Latch to store the <i>Input</i> value as long as <i>Enable</i> is TRUE .

Table 126: Latch control inputs, output, and internal parameter

5.13 LogicTable

Summary: **LogicTable** a mechanism for combining up to four Boolean controls into a single function. The four inputs combine to form a four-bit number that acts as an index into a 16-value array or lookup table. This array contains floating point values, combining control functions in a simple fashion.

Description: The four Boolean inputs into the component are combined into a single *Index* value as follows:

 $Index = (Input0 \times 1) + (Input1 \times 2) + (Input2 \times 4) + (Input3 \times 8)$

The resulting index value is used as an *Index* into the 16-value array. The array values are set as parameters. **LogicTable** determines the array value at the given index. It then adds the array value to the chain value to derive the final output.

Table 127, "LogicTable control inputs" below lists and describes **LogicTable** control input variables:

Name	Туре	Default Value	Description
Chain	float32	1.0	Value added to gain scaled <i>Output</i> from the lookup table.
			 <i>Modifier</i>. multiply (*) <i>Modifier_default</i>. 0.0
Gain	float32	1.0	Scales the Output from the lookup table.
			 <i>Modifier</i>. multiply (*) <i>Modifier_default</i>. 1.0
Input0	Boolean	FALSE	A Boolean input whose value is assigned to Bit0 in the derived index value. If TRUE , a value of 1 is added to the derived index value.
			 Modifier. XOR Modifier_default: FALSE
Input1	Boolean	FALSE	A Boolean input whose value is assigned to Bit1 in the derived index value. If TRUE , a value of 2 is added to the derived index value.
			 Modifier. XOR Modifier_default: FALSE
Input2	Boolean	FALSE	A Boolean input whose value is assigned to Bit2 in the derived index value. If TRUE , a value of 4 is added to the derived index value.
			 Modifier. XOR Modifier_default: FALSE
Input3	Boolean	FALSE	Boolean input whose value is assigned to Bit3 in the derived index value. If TRUE , a value of 8 is added to derived index value.
			 Modifier. XOR Modifier_default. FALSE

Table 127: LogicTable control inputs

Table 128, "LogicTable control output" below lists and describes the **LogicTable** control output variable:

Name	Туре	Default Value	Description
Output	float32	0	Final output value from LogicTable .

 Table 128: LogicTable control output

Table 129, "LogicTable internal parameter" below lists and describes the LogicTable internal parameter variable:

Name	Туре	Default Value	Description
Lookup_Table	float32[16]	0–15.0	Lookup table value for result index 0–15.

Table 129:	LogicTable	internal	parameter
1			p

5.14 MathFunction

Summary: **MathFunction** calls a user-specified function (e.g., lookup table, add, subtract, multiply, divide, etc.) that acts on the input(s). The output is the result of the specified function acting on the input variables. **MathFunction** links to a variable inside the data sink component.

Description:

MathFunction provides a variety of modifier features:

- 1. One, two, or three data source inputs.
- 2. A link to the **Function Service**, providing access to a one-variable function (i.e., f(x)), a two-variable function (i.e., f(x,y)) or a three-variable function (i.e., f(x, y, z)).

MathFunction has X, Y, and Z inputs and serves the following functions:

- *One-variable function*: links one input to a value, and a one-variable function (i.e., f(x)) is selected. The two unused inputs assume values of 1 or are unused.
- *Two-variable function*: two inputs link to values, and a two-variable function (i.e., f (x,y)) is selected. The unused input assumes a value of 1 or is unused.
- *Three-variable function*: all three inputs link to values, and a three-variable function (i.e., f(x, y, z)) is selected. Any unused input is ignored. Nondriven inputs assume a value of 1. Each input has its own constant scaling factor and multiplier operand. Each of the input scaling factors are user-selectable.

Choose the function operating on the X, Y, and Z inputs is selected using the function handle. The function handle specifies an f(x), f(x, y) or f(x, y, z) function from the Function Service. Function handles include the following:

- Table (x)
- Scale/Limit (x)
- Log/Antilog (x)
- Lag Filter (x)
- Add/ Subtract/ Multiply/ Divide (x, y)
- Random Number (x)
- Comparator / MaxMin (x)
- Switch (x, y, z)

You can modify the function evaluation with a scaling factor and multiplier operand. *Gain* is also available as a final-stage scaling factor—it modifies the scaled evaluation of the function. *Gain* has its own constant scaling factor and multiplier operand. The final result of **MathFunction** equals the scaled *Gain* value multiplied by the scaled function evaluation.

Result data types include:

- *Float*: output result of **MathFunction** and a floating point value.
- *Integer*: output result of **MathFunction**, an integer value, and a rounding of the floating point result.
- *Boolean*: output result of **MathFunction** as a Boolean. The Boolean is a digital comparison of the float value based on a 0.3 and 0.7 low and high threshold value. Below 0.3 is turned off, above 0.7 is turned on, the 0.4 difference provides a hysteresis region.

Table 130, "MathFunction control inputs" on the facing page lists and describes **MathFunction** control input variables:

Name	Туре	Default Value	Description
Gain	float32	1.0	Links to another control source to provide overall gain control of the MathFunction evaluation. If no external variable is connected to <i>Gain</i> , MathFunc- tion uses the scaler value. • <i>Modifier</i> : multiply (*) • <i>Modifier_default</i> : 1.0 • <i>Range</i> : minmax. values of each type

Name	Туре	Default Value	Description
Input_X	float32	1.0	Links to another control source (e.g., HostIn or MathFunction), which provides the first variable for MathFunction to use (i.e., the first stack element). If no external variable is connected to <i>Input_X</i> , the value of the scaler is used. • <i>Modifier</i> : multiply (*) • <i>Modifier_default</i> : 1.0 • <i>Range</i> : minimum to maximum values of each
Input_Y	float32	1.0	type Links to another control source (e.g., HostIn or MathFunction), which provides the second variable for MathFunction to use (i.e., the second stack ele- ment). If no external variable is connected to <i>Input_Y</i> , the value of the scaler is used. • <i>Modifier</i> : multiply (*) • <i>Modifier_default</i> : 1.0 • <i>Range</i> : minimum to maximum values of each type
Input_Z	float32	1.0	 Links to another control source (Hostin or MathFunction), which provides the third variable for MathFunction to use (i.e., the third stack element). If no external variable is connected to <i>Input_Z</i>, the value of the scaler is used. <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 1.0 <i>Range</i>: minimum to maximum values of each type

Table 130: MathFunction control inputs

Table 131, "MathFunction control output" below lists and describes the **MathFunction** control output variable:

Name	Туре	Default Value	Description
Result	float32	1.0	The result of the input values, acted on by the spe- cified function and internal multiplier scaling factors.

Table	131:	MathF	Function	control	output
-------	------	-------	-----------------	---------	--------

Table 132, "MathFunction internal parameter" below lists and describes the **MathFunction** internal parameter:

Name	Туре	Default Value	Description
Function	function	<select></select>	The function service handle selections include: Table(x), Scale (x,y), Random Number (x), Comparator/MaxMin (x), and Switch (x, y, z).Range:• Table• Subtract• Scale• Multiply• Limit• Divide• Log• Random• Antilog• Comparator• Lag filter• Maxmin• Add• Switch

Table 132: MathFunction internal parameter

5.15 NumToString

Summary: NumToString takes a set of input numbers and converts them into a single string for use with **Radio Transceiver**. This functionality allows host control of common Distributed Interactive Simulation (DIS) parameters for radios by setting the *DomainNameIn* and *ProtocolIDIn* fields of the Radio Transceiver.

Description: NumToString takes up to four input numbers and combines them together to form a string. A prefix, suffix, and character separator help fit the *ProtocolID* and *DomainName* syntax for radios. The most common use of NumToString is to set the exercise ID of the radio by creating a string (e.g., DIS:5).

The string above can be used in the **Transceiver's** *DomainNameIn* and sets the radio's DIS exercise ID to 5. As a result, *Input0* is 5, *Prefix* is "DIS:" and *InputCount* is 1. Another component can also set *Input0*, allowing you to change the radio's exercise ID to as needed.

NumToString also produces strings such as DIS:80.1.3.17.

This string can be used in a **Transceiver's** *ProtocolIDIn* and sets Site ID to 80, Application ID to 1, Entity ID to 3, and the Radio ID to 17. With this method, another component or **HostIn** can dynamically set *Input0–Input3*, allowing you to change any of the DIS IDs for a radio on an as needed basis. To create the string above, set the prefix to "DIS:" and *InputCount* to 4. Additionally, set *Input0–Input3* to the digits used above, and use a period for the separator.

Table 133, "NumToString control inputs" below lists and describes **NumToString** control input variables:

Name	Туре	Default Value	Description
Input0	int32	0	Becomes part of the output string based on con- ditional parameters. If used for <i>Domain Name:</i> <i>Domain Name</i> equals the DIS Exercise ID. If used for <i>Protocol ID: Protocol ID</i> equals the DIS Entity ID or DIS Site ID.
Input1	int32	0	Becomes part of the output string based on con- ditional parameters. If used for <i>Protocol ID</i> , it equals the DIS Radio ID or DIS Application ID.
Input2	int32	0	Becomes part of output string based on conditional parameters. If used for <i>Protocol ID</i> , it equals DIS Entity ID.
Input3	int32	0	Becomes part of the output string based on con- ditional parameters. If used for <i>Protocol ID</i> , it equals DIS Radio ID.

Table 133: NumToString control inputs

Table 134, "NumToString control output" below lists and describes the **NumToString** control output:

Name	Туре	Default Value	Description
Output	string	0000	Outputs string values, maximum number of string characters = 32.

Table 134: NumToString control output

Table 135, "NumToString internal parameters" on the next page lists and describes **NumToString** internal parameter variables:

Name	Туре	Default Value	Description
InputCount	int32	0	Sets the number of values defined by inputs, typically 4.
KCycles	int32	0	Currently not required.
Prefix	string	N/A	Attaches to front of string. Typically used for "DIS" or colon ":".

Name	Туре	Default Value	Description
Separator	string	N/A	Attaches to string to separate values. Typically used for " . " or space " ".
Suffix	string	N/A	Attaches to end of string and may be any string value.

Table 135: NumToString internal parameters

5.16 PassThrough

Description: PassThrough passes variables from **HostIn** to **HostOut**. Do not use this component for any other purpose. For example, you may want to transfer unmodified host input variables through the model and out to a separate host computer or touchscreen tablet.

6.0 Dynamics

The following section details **Dynamics** components and the objects within them, which are used to control the volume or level of signals. The **Dynamics** group includes the following components:

- AGC keeps a signal near a "target" level.
- **CompressorLimiter** prevents signals from getting too loud.
- Expander reduces the volume of quiet signals like background noise between speech.
- Gate only allows a signal through if it is loud enough.

Common to all four of these components are controls measured in dB and dB/sec. The dB controls such as target and threshold specify signal levels relative to 1.0 (as seen in the signal scope). Table 136, "Linear equivalents to dB values" below shows a few dB values and their linear scale equivalents.

dB Value	Linear Value
0	1.0
-6	0.5
-12	0.25
-18	0.125
-40	0.01
-60	0.001

Table 136: Linear equivalents to dB values

Speech, for example, might be around -20 dB in the system (depending on the microphone and input gains), while background noise might be around -60 dB. *Attack* and *Release* gain controls are measured in dB/sec, which is one way of specifying how quickly the gain can change. An attack of 6 dB/sec, for example, means the gain could double every second. Generally, practical *Attack* and *Release* rates are much quicker, typically in the range of 50–1000 dB/sec.

6.1 AGC

Summary: **AGC** for automatic gain control attempts to keep audio at a consistent, specified volume.

Description: AGC controls the signal's volume to keep the output close to a target volume. This component contains two stages: AGC and LIMITER. In the AGC stage, the component reduces signals above the target and increases signals below the target (and above the threshold). LIMITER then prevents any high peaks that AGC may have induced.

AGC can be useful for a variety of volume-leveling tasks, such as evening out microphone volumes before the input of the speech recognition system.

Table 137, "AGC audio input and output" below lists and describes AGC audio input and output variables:

Name	Туре	Default Value	Description	
Audio Input				
InSignal	audio	N/A	The signal that you will filter. This input links into AGC from somewhere else in the model.	
Audio Output				
OutSignal	audio	N/A	The processed signal that has gone through AGC and LIMITER stages.	

Table 137: AGC audio input and output

Table 138, "AGC control inputs" on the facing page lists and describes AGC control input variables:

Name	Туре	Default Value	Description
Attack	float32	1.0	Determines how quickly the gain increases when the level drops below the threshold. Values are in decibels per second. Higher attack increase rate of gain change. • <i>Modifier:</i> 250.0
Enable	Boolean	TRUE	Controls whether any gain adjustment occurs.
LimEnable	Boolean	TRUE	Turns the LIMITER stage on or off in the AGC . If TRUE , the peak output levels of the AGC does not go above <i>LimThreshold</i> .

Name	Туре	Default Value	Description
LimThreshold	float32	1.0	 Maximum peak level in dB allowed in output signal. A value of -18 corresponds to 0.125 linear. <i>Modifier:</i> -18.0
OutGain	float32	1.0	Applied to the signal after AGC stage.
Ratio	float32	1.0	Controls how much the signal level advances to the <i>Target</i> . A 4.0 ratio (4:1) means a 4 dB signal from the target leaves AGC only 1 dB away. Higher ratios have more push. • <i>Modifier:</i> 4.0
Release	float32	1.0	Determines how quickly gain decreases when signal level goes above <i>Target</i> . Values are in decibels per second. Higher releases aggressively reduce the Root Mean Squared gain. • <i>Modifier:</i> 100
Target	float32	1.0	 The "goal" output signal level in the Telestra web interface, measured in dB, relative to 1.0 level. As with any dB control, negative values are quieter; positive values are louder. <i>Modifier:</i> -24.0
Threshold	float32	1.0	 Level above which automatic gain control occurs. Adjust above noise floor, so background noise does not increase. Values are in dB, relative to the Telestra web interface 1.0 level. <i>Modifier:</i> -70.0

Table 138: AGC control inputs

6.2 CompressorLimiter

Summary: CompressorLimiter reduces the volume of loud sounds.

Description: CompressorLimiter has two stages that work together to keep volume (i.e., signal levels) under control. In the first stage, COMPRESSOR reduces the volume of the signal when its average Root Mean Squared level exceeds *Threshold*. In the second stage, LIMITER then prevents peak levels from exceeding the *LimThreshold*. This functionality makes it a useful tool for preventing sound levels or clipping that could cause damage to equipment or your hearing.

Table 139, "CompressorLimiter audio inputs" below lists and describes **CompressorLimiter** audio input variables:

Name	Туре	Default Value	Description
InSignal	audio	N/A	The processed signal. This input links to Com- pressorLimiter from elsewhere in the model.
SideChain	audio	N/A	A second audio input which is used for level cal- culations if <i>SideChainEnable</i> is TRUE . In this mode, the <i>InSignal</i> is compressed only if the <i>SideChain</i> exceeds the threshold. This is useful for controlling the relative volumes of two sounds.

Table 139: CompressorLimiter audio inputs

Table 140, "CompressorLimiter audio output" below lists and describes the **CompressorLimiter** audio output variable:

Name	Туре	Default Value	Description
OutSignal	audio		The processed signal that has gone through the COMPRESSOR and LIMITER stages.

Table 140: CompressorLimiter audio output

Table 141, "CompressorLimiter control inputs" on the facing page lists and describes **CompressorLimiter** control input variables:

Name	Туре	Default Value	Description
Attack	float32	1.0	 Determines how quickly the gain is turned down when the signal level goes above threshold. Values are in dB/sec. Higher attacks produce faster gain reductions. <i>Modifier:</i> 350.0
CompOutGain	float32	1.0	The gain applied to the signal after the COMPRESSOR stage but before the LIMITER stage.
Enable	Boolean	TRUE	Determines if the COMPRESSOR stage adjusts the gain.
LimAllowClip	Boolean	FALSE	If TRUE , signal peaks are hard clipped at <i>LimThreshold</i> ; produces radio distortion-like effects.

Name	Туре	Default Value	Description
LimEnable	Boolean	TRUE	Turns the LIMITER stage on or off in Com- pressorLimiter . If TRUE , its peak output levels do not exceed the <i>LimThreshold</i> .
LimRelease	float32	1.0	 Rate in dB/sec that determines how quickly the LIMITER responds to drop-in signal levels. Higher releases cause a faster increase in gain to ensure the quiet signals do not reduce in volume. <i>Modifier:</i> 100.0
LimThreshold	float32	1.0	Maximum peak level in dB allowed in output sig- nal. A value of -12 corresponds to 0.25 linear, or 1/4 of "full scale" signal. • <i>Modifier:</i> -12.0
OutGain	float32	1.0	Gain applied to signal after both the COMPRESSOR and LIMITER stages.
Ratio	float32	1.0	Controls the aggressiveness of the COMPRESSOR. A high ratio is more aggressive and means more gain reduction occurs when the signal goes above threshold. Specifically, a 4.0 ratio (4:1) means a 4 dB signal above the threshold leaves CompressorLimiter only 1 dB above the threshold. A 20 ratio or higher is equi- valent to (∞ :1), meaning the signal's average level never exceeds the threshold. • <i>Modifier:</i> 4.0
Release	float32	1.0	Determines how quickly the gain turns when the level goes below the threshold. Values are in dB/sec. Higher releases produce more aggressive gain rate increase. • <i>Modifier:</i> 50.0
SideChainEnable	Boolean	FALSE	If TRUE , <i>SideChain</i> audio input controls gain reduction on <i>InSignal</i> , rather than <i>InSignal</i> itself.
Threshold	float32	1.0	 The average Telestra web interface signal level above which gain reduction occurs. Values are in dB. <i>Modifier:</i> -24.0

Table 141: CompressorLimiter control inputs

6.3 Expander

Summary: Expander is used reduces the volume of background noise between speech.

Description: Expander increases the dynamic range of a signal by making quiet sounds quieter. If the average Root Mean Squared level of the signal is below the threshold, **Expander** smoothly reduces the gain on the signal. The key to using **Expander** is to adjust the threshold to be just above the noise floor. This component is useful in hot mic situations to reduce background noise transmission.

Table 142, "Expander audio inputs and outputs" below lists and describes **Expander** audio input and output variables:

Name	Туре	Default Value	Description
Audio Input			
InSignal	audio	N/A	The processed signal; this input is linked into the com- ponent from somewhere else in model.
Audio Output			
OutSignal	audio	N/A	The processed signal that went through the Expander stage.

Table 142: Expander audio inputs and outputs Image: Comparison of Co

Table 143, "Expander control inputs" on the facing page lists and describes **Expander** control input variables:

Name	Туре	Default Value	Description
Attack	float32	250.0	Controls how quickly the gain changes in response to a signal level increase. Expander controls how quickly the gain is restored to 1.0 when speech resumes.
Enable	Boolean	TRUE	Controls whether any gain adjustment occurs.
OutGain	float32	1.0	The gain applied after the Expander stage.
Ratio	float32	2.0	Controls how aggressively sounds below the threshold reduce in volume. A ratio of 2.0 (2:1) means a signal of 1 dB below exits the Expander 2 dB below.

Name	Туре	Default Value	Description
Release	float32	1.0	Controls how quickly the gain changes in response to a decrease in signal level. High releases causes a quick reduction in background noise when speech stops. • <i>Modifier:</i> 50.0
Threshold	float32	1.0	Level in dB below that expansion (i.e., gain reduc- tion) occurs. Adjust threshold to just above loudest sound that reduces in volume; corresponds to just above background noise level. • <i>Modifier:</i> -55.0

Table 143: Expander control inputs

6.4 Gate

Summary: Gate only allows a signal through if it is loud enough to break the threshold.

Description: This component is similar to **Audio/Vox** because it only lets audio through (to a radio, etc.) if the audio level is above a set level. For example, you might adjust the threshold just below the quietest speech allowed through. **Gate** reacts to peak levels in the signal, unlike **Vox**, which looks at average levels. As a result, **Gate** is more responsive, especially to the first sounds as speech starts.

Table 144, "Gate audio input and output" below lists and describes **Gate** audio input and output variables:

Name	Туре	Default Value	Description
Audio Input			
InSignal	audio	N/A	The filtered signal; links into Gate from somewhere else in the model.
Audio Output			
OutSignal	audio	N/A	Processed signal that went through Gate .

Table 144: Gate audio input and output

Name	Туре	Default Value	Description
Depth	float32	1.0	Amount of gain reduction in dB that is applied when the signal dips below the threshold.<i>Modifier:</i> 40.0
Enable	Boolean	TRUE	Controls whether any gain adjustment occurs.
Hold	float32	1.0	Delay in milliseconds before reducing gain on a sig- nal after it goes below the threshold; allows the signal through Gate for hold time, even though it is below the threshold.
			• <i>Modifier:</i> 1000.0
OutGain	float32	1.0	Applied after Gate stage.
PTT	Boolean	FALSE	Opens Gate (i.e., let the signal through), even if it is below the threshold.
Threshold	float32	1.0	Level in dB below which a signal attenuates in volume or is barred from the Gate .
			• Modifier: -45.0
VoxMode	Boolean	FALSE	If TRUE , Gate acts like the Vox component and causes an audio stream to go inactive if it is below the threshold. If FALSE , signals below the threshold attenuates according to the depth setting but remain active.

Table 145, "Gate control i	inputs" below lists and describes (Gate control input variables:
----------------------------	-------------------------------------	-------------------------------

Table 145: Gate control inputs

7.0 Environmental Cue

The following section details the **Environmental Cue** components and the objects within them. The **Environmental Cue** components include:

- 5BandFilter
- Engine
- EngineLevelD
- FilterBank
- JetEngine
- MultiFilter
- PropRotor
- SpeakerEQ
- VibrationCapture

7.1 5BandFilter

Summary: Combines five MultiFilter components into one component.

Description: This component essentially connects five **MultiFilter** components in series. This component therefore consumes more processing power and should be used for complex filtering schemes. The advantage of using this component over five **MultiFilter** components is that all inter-filter routing is handled within the component. For more information about **MultiFilter** components, go to Section 7.4, "MultiFilter" on page 131.

Table 146, "5BandFilter audio input and output" below lists and describes **MultiFilter** audio input and output variables:

Name	Туре	Default Value	Description
Audio Input			
InSignal	audio	N/A	The audio signal to be filtered from somewhere else in the model.
Audio Output			
OutSignal	audio	N/A	The signal after it is filtered.

Table 146: 5BandFilter audio input and output

Table 147, "5BandFilter control inputs" on the facing page lists and describes **5BandFilter** control input variables:

Name	Туре	Default Value	Description
Filter1_ Enable1_Fil-	Boolean	TRUE	Determines if the signal is filtered. If FALSE , the sig- nal is not filtered, but <i>OutGain</i> is still applied.
ter5_Enable5			<i>Modifier</i>. XOR<i>Modifier_default</i>. TRUE
Filter1_Fre- quency1–Fil- ter5_ Frequency5	float32	1.0	Specifies the frequency in Hertz. For <i>BandPass</i> , <i>BandPassUnityGain</i> , and <i>PeakingEQ</i> , this variable specifies passband's center frequency. For <i>Notch</i> fil- ter, this variable specifies stopband's center fre- quency. For <i>LowPass</i> and <i>HighPass</i> , this variable specifies corner (-3 dB) frequency. For <i>LowShelf</i> and <i>HighShelf</i> , this variable specifies midpoint frequency. Range of is [20, 24000).
			Modifier_default: 500
Filter1_Gain_ dB1–Filter5_ Gain_dB5	float32	0.0	 Specifies the gain value in dB. For <i>PeakingEQ</i>, <i>HighShelf</i>, and <i>LowShelf</i>, this variable specifies gain applied to passband. Range is [-50,50]. <i>Modifier</i>. add (+) <i>Modifier default</i>: 0.0
OutGain1– OutGain5	float32	0.0	Specifies gain in linear scale. For all filters, this variable specifies gain applied to post-filtered signal. This variable takes effect even if <i>Enable</i> results in FALSE and if <i>FilterType</i> is OFF . The range of this variable is [0, 316.2277], and a setting of 1.0 corresponds to a gain of 0 dB. These variables are only visible in Full View , not Filter View . • <i>Modifier</i> : multiply (*) • <i>Modifier_default</i> : 1.0

Name	Туре	Default Value	Description
Filter1_ QFactor1–Fil- ter5_QFactor5	float32	1.0	Specifies bandwidth for <i>BandPass</i> , <i>BandPassUn-ityGain</i> , <i>Notch</i> , and <i>PeakingEQ</i> ; the higher this value, the smaller the bandwidth. For <i>HighPass</i> , <i>LowPass</i> , <i>HighShelf</i> , and <i>LowShelf</i> , this variable specifies the roll-off or corner frequency gain; the higher this value, the steeper the roll-off and higher the gain at corner frequency. This variable's range is (0, 16), and setting this variable to a 0 value or lower results in a default of 0.707107. <i>Modifier</i> : multiply (*) <i>Modifier_default</i> : 0.7071

Table 147: 5BandFilter control inputs

Table 148, "5BandFilter internal parameters" below lists and describes **5BandFilter** internal parameter variables:

Name	Туре	Default Value	Description
Filter1_Fil- terType1–Fil- ter5_ FilterType5	filter_type3	LowPass	Determines the type of filter applied to the input sig- nal. If no filtering is desired, set <i>FilterType</i> to OFF .
Filter1_ Order1–Fil- ter5_Order5	filter_order	_12dB_Per_ Octave	Determines the order of the filter applied to the input signal. The second, fourth, and sixth orders are avail- able, corresponding to 12, 24, and 36 dB per octave roll-off in <i>LowPass</i> , <i>HighPass</i> , <i>LowShelf</i> , and <i>HighShelf</i> filters and 6, 12, and 18 dB per octave roll- off in <i>BandPass</i> , <i>BandPassUnityGain</i> , <i>Notch</i> and <i>PeakingEQ</i> filters, assuming <i>QFactor</i> is fixed at 0.7071. Generally, the higher this variable, the steeper the roll-offs.

Table 148: 5BandFilter internal parameters

7.2 Engine

Summary: Engine recreates the tones for a single jet engine.

Description: **Engine** provides a composite sound for an engine. The component includes two principal sources for noise and three independent whine tones. You can tune the overall sound based on manipulating the driving parameters for the noises, whines, and overall gain control.

Table 149, "Engine audio output" below lists and describes the Engine audio output variable:

Name	Туре	Default Value	Description
OutputSignal	audio	N/A	The audio output signal from Engine .

Table 149: Engine audio output

Table 150, "Engine control inputs" on page 128 lists and describes **Engine** control input variables:

Name	Туре	Default Value	Description
Noise1Filter1			
NoiseFilter1_GainInput	float32	1.0	Control connection for the Noise 1 gain.
GainFunction	function	<select></select>	Connection to selected table or function for controlling noise gain based on <i>NoiseFilter1_GainInput</i> .
GainFunctionScalar	float32	1.0	Scaling factor for the Noise 1 gain con- trol.
GainResult	float32	1.0	Final gain factor for the Noise Source 1.
NoiseFilter1_Fre- quencyInput	float32	1.0	Control connection for the Noise 1 fre- quency.
FrequencyFunction	function	<select></select>	Connection to selected table or function for controlling noise frequency based on the <i>NoiseFilter1_FrequencyInput</i> .
FrequencyFunctionScalar	float32	1.0	Scaling factor for the Noise 1 frequency control.
FrequencyResult	float32	10.0	Final frequency factor for the Noise Source 1.
Noise2Filter2			
NoiseFilter2_GainInput	float32	1.0	Control connection for the Noise 2 gain.
GainFunction	function	<select></select>	Connection to selected table or function for controlling noise gain based on the <i>NoiseFilter2_GainInput</i> .
GainFunctionScalar	float32	1.0	Scaling factor for the Noise 2 gain con- trol.
GainResult	float32	1.0	Final gain factor for the Noise Source 2.
NoiseFilter2_Fre- quencyInput	float32	1.0	Control connection for the Noise 2 fre- quency.

Name	Туре	Default Value	Description
FrequencyFunction	function	<select></select>	Connection to selected table or function for controlling noise frequency based on the <i>NoiseFilter2_FrequencyInput</i> .
FrequencyFunctionScalar	float32	1.0	Scaling factor for the Noise 2 frequency control.
FrequencyResult	float32	10.0	Final frequency factor for the Noise Source 2.
WhineTone1			
WhineTone1_GainInput	float32	0.0	Control connection for the Whine 1 gain.
GainFunction	function	<select></select>	Connection to selected table or function for controlling whine gain based on the <i>WhineTone1_GainInput</i>
GainFunctionScalar	float32	1.0	Scaling factor for the Whine 1 gain con- trol.
GainResult	float32	0.0	Final gain factor for the Whine 1.
WhineTone1_Frequency	float32	1.0	Frequency in Hertz of the Whine 1 tri- angle wave.
WhineTone2			
WhineTone2_GainInput	float32	0.0	Control connection for the Whine 2 gain.
GainFunction	function	<select></select>	Connection to selected table or function for controlling whine gain based on the <i>WhineTone2_GainInput</i> .
GainFunctionScalar	float32	1.0	Scaling factor for the Whine 2 gain con- trol.
GainResult	float32	0.0	Final gain factor for the Whine 2.
WhineTone2_Frequency	float32	1.0	Frequency in Hertz of the Whine 2 tri- angle wave.
WhineTone3			
WhineTone3_GainInput	float32	0.0	Control connection for the Whine 3 Gain.
GainFunction	function	<select></select>	Connection to selected table or function for controlling whine gain based on the <i>WhineTone3_GainInput</i> .
GainFunctionScalar	float32	1.0	Scaling factor for the Whine 3 gain con- trol.
GainResult	float32	0.0	Final gain factor for the Whine 3.

Name	Туре	Default Value	Description
WhineTone3_Frequency	float32	1.0	Frequency in Hertz of the Whine 3 tri- angle wave.
OutGain	float32	1.0	Applies amplitude gain control to output signal. If no external control is connected to <i>OutGain</i> , scale factor functions as <i>OutGain</i> .

Table 150: Engine control inputs

7.3 EngineLevelD

Summary: EngineLevelD is a high-fidelity engine component that can recreate intake hisses, combustion roar, blade and tip buzz, and characteristic whine tones.

Description: **EngineLevelD** provides a composite sound for engines at the highest fidelity level required by the FAA. The component includes five principal sources for noise, including the following:

- The impact of the blade movement through air
- The effects of air velocity
- The noise effect based on aircraft altitude
- The noise effect of engine fuel consumption
- The noise effect of the engine ignition

To tune the overall sound, manipulate the revolutions per minute (RPM), airspeed, fuel flow, and overall gain control.

Table 151, "EngineLevelD control inputs" on the facing page lists and describes **EngineLevelD** control input variables:

Name	Туре	Default Value	Description
Airspeed	float32	1.0	Provides the control of the airspeed, which drives the intake hiss sound.
Altitude	float32	1.0	Provides a gain effect based on altitude; input affects the overall output of EngineLevelD .
EngineLit	Boolean	TRUE	Controls when the igniters light the fuel in the engine.

Name	Туре	Default Value	Description
FuelFlow	float32	1.0	The rate of fuel consumed by the engine, typ- ically pounds per hour.
N1_RPM	float32	1.0	Provides control for the first stage of blade RPM.
N2_RPM	float32	1.0	Provides control for the second stage of blade RPM.
OutputGain	float32	1.0	Applies the overall composite gain control.

Table 151: EngineLevelD control inputs

Table 152, "EngineLevelD internal parameters" on page 131 lists and describes **EngineLevelD** internal parameter variables:

Name	Туре	Default Value	Description		
Altitude		·			
Gain_Table	function	<select></select>	Pointed to a table to control the altitude effect based on the <i>Altitude</i> input.		
Gain	float32	1.0	Gain result for the Altitude effect.		
Combustion_Fuelflo	W				
Freq_Table	function	<select></select>	Pointer to a table to control the frequency of the combustion effect based on FuelFlow.		
Gain_Table	function	<select></select>	Pointer to a table to control the gain of the com- bustion effect based on FuelFlow.		
Frequency	float32	10.0	Frequency result for the combustion effect.		
Gain	float32	1.0	Gain result for the combustion effect.		
ExhaustRoar_FuelF	low				
Freq_Table	function	<select></select>	Pointer to a table to control the frequency of the exhaust roar effect based on FuelFlow.		
Gain_Table	function	<select></select>	Pointer to a table to control the gain of the exhaust roar effect based on FuelFlow.		
Frequency	float32	10.0	Frequency result for the exhaust roar effect.		
Gain	float32	1.0	Gain result for the exhaust roar effect.		
IntakeHiss_Airspeed	IntakeHiss_Airspeed				
Freq_Table	function	<select></select>	Pointer to a table to control the frequency of the intake hiss effect based on airspeed.		

Name	Туре	Default Value	Description
Gain_Table	function	<select></select>	Pointer to a table to control the gain of the intake hiss effect based on airspeed.
Frequency	float32	1.0	Frequency result for the intake hiss based on airspeed effect.
Gain	float32	1.0	Gain result for the intake hiss based on air- speed effect.
IntakeHiss_RPM			
Freq_Table	function	<select></select>	Pointer to a table to control the frequency of the intake hiss effect based on N1 RPM.
Gain_Table	function	<select></select>	Pointer to a table to control the gain of the intake hiss effect based on N1 RPM.
Frequency	float32	1.0	Frequency result for the intake hiss based on RPM effect.
Gain	float32	1.0	Gain result for the intake hiss based on RPM effect.
RotatingMachinery_	_RPM		
Freq_Table	function	<select></select>	Pointer to a table to control the frequency of the rotating machinery effect based on N1 RPM.
Gain_Table	function	<select></select>	Pointer to a table to control the gain of the rotat- ing machinery effect based on N1 RPM.
Frequency	float32	1.0	Frequency result for the rotating machinery based on RPM effect.
Gain	float32	1.0	Gain result for the rotating machinery based on RPM effect.
TurboFan1_RPM			
Freq_Table	function	<select></select>	Pointer to a table to control the frequency of the Fan effect based on N1 RPM.
Gain_Table	function	<select></select>	Pointer to a table to control the gain of the Fan effect based on N1 RPM.
Frequency	float32	1.0	Frequency result for the Fan based on RPM effect.
Gain	float32	1.0	Gain result for the Fan based on RPM effect.
TurboFan2_RPM			

Name	Туре	Default Value	Description
Freq_Table	function	<select></select>	Pointer to a table to control the frequency of the Fan effect based on N1 RPM.
Gain_Table	function	<select></select>	Pointer to a table to control the gain of the Fan effect based on N1 RPM.
Frequency	float32	1.0	Frequency result for the Fan based on RPM effect.
Gain	float32	1.0	Gain result for the Fan based on RPM effect.
Whine_1–Whine_6			
Frequency_ Table	function	<select></select>	Pointer to a table to control the frequency of the Whine effect based on N1 or N2 RPM.
Gain_Table	function	<select></select>	Pointer to a table to control the gain of the Whine effect based on N1 or N2 RPM.
Frequency	float32	1.0	Frequency result for the Whine based on RPM effect.
Gain	float32	1.0	Gain result for the Whine based on RPM effect.
Freq_N1(0)_ Drive, Freq_N2 (1)_Drive	float32	0.0	Switch to select N1 or N2 as source RPM for <i>Frequency_Table</i> drive.
Gain_N1(0)_ Drive, Gain_N2 (1)_Drive	float32	0.0	Switch to select N1 or N2 as source RPM for <i>Gain_Table</i> drive.

Table 152: EngineLevelD internal parameters

7.4 MultiFilter

Summary: Expanded version of the **Filter**. **MultiFilter** has a variety of basic filter types and the ability to define the filter order.

Description: MultiFilter filters a signal using one of the basic filter types described below:

- *Off:* no filtering occurs.
- OutGain: affects OutSignal amplitude.
- *LowPass*: basic *LowPass* filter; frequency content below the specified frequency is passed through and content above is attenuated.
- *HighPass*: basic *HighPass* filter; frequency content below the specified frequency is attenuated, content above is passed through.

- *BandPass*: basic *BandPass* filter; frequency content ranging from *StartBand* to *EndBand* is passed through; content outside of this range is attenuated.
- *BandPassUnityGain*: same as the *BandPass* filter except the amplitude of the *BandPassFilter* is scaled by *1/QFactor* resulting in a 0 dB peak gain, whereas the normal *BandPassFilter* has a peak gain of Q.
- Notch: basic Notch filter; frequency content at the specified frequency is attenuated.
- AllPass: basic AllPass filter; no frequency is attenuated.
- *PeakingEQ*: basic *Peak* filter; frequency content near the specified frequency is boosted or attenuated by the *Gain_dB* control.
- *LowShelf*: basic *LowShelf* filter; frequency content below the specified frequency is boosted or attenuated by the *Gain_dB* control.
- *HighShelf*: basic *HighShelf* filter; frequency content above the specified frequency is boosted or attenuated by the *Gain_dB* control.

If the filter is not enabled, the incoming *InSignal* is passed through unprocessed but potentially modified by the *OutGain* control. For a true bypass of **MultiFilter**, ensure *OutGain* results in 1.0 and *Enable* or *FilterType* results in **FALSE** or **OFF**.

Table 153, "MultiFilter audio input and output" below lists and describes **MultiFilter** audio input and output variables:

Name	Туре	Default Value	Description
Audio Input			
InSignal	audio N/A The audio signal to be filtered.		The audio signal to be filtered.
Audio Output			
OutSignal	audio	N/A	The signal after it is filtered.

Table 153: MultiFilter audio input and output

Table 154, "MultiFilter control inputs" on the next page lists and describes **MultiFilter** control input variables:

Name	Туре	Default Value	Description
Enable	Boolean	TRUE	Determines if the signal is filtered. If this variable results in FALSE , the signal is not filtered, but <i>OutGain</i> is still applied.
			<i>Modifier</i>_XOR<i>Modifier_default</i>. FALSE
Frequency	float32	1.0	 Specifies the frequency in Hertz. For BandPass, BandPassUnityGain, and PeakingEQ, this variable specifies the passband's center frequency. For Notch, this variable specifies the stopband's center frequency. For LowPass and HighPass, this variable specifies corner (-3 dB) frequency. For LowShelf and HighShelf, this variable specifies the midpoint fre- quency. This variable's range is [20, 24000). Modifier: multiply (*) Modifier_default. 500
Gain_dB	float32	0.0	 Specifies a gain value in dB. For <i>PeakingEQ</i>, <i>HighShelf</i>, and <i>LowShelf</i>, this variable specifies gain applied to the passband. This control's range is [-50, +50]. <i>Modifier</i>. add (+) <i>Modifier_default</i>: 0.0
OutGain	float32	0.0	 Specifies the gain in linear scale. For all filters, this control specifies the gain applied to the post-filtered signal. This variable takes effect even if <i>Enable</i> is FALSE and <i>FilterType</i> is OFF. This control's range is [0, 316.2277]; a 1.0 setting corresponds to 0 db gain. <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 1.0

Name	Туре	Default Value	Description
QFactor	float32	1.0	 Filter quality factor that specifies the bandwidth for <i>BandPass, BandPassUnityGain, Notch</i>, and <i>Peak-ingEQ</i>; the higher this value, the smaller the bandwidth. <i>StartBand</i> and <i>EndBand</i> adjust according to <i>QFactor</i> and are not adjustable in display. For <i>HighPass, LowPass, HighShelf</i>, and <i>LowShelf</i>, this variable specifies roll-off/corner frequency gain; the higher this value, the steeper the roll-off and the higher the gain at the corner frequency. This control's range is (0, 16). Setting this control to a value of 0 or lower defaults the control to 0.707107. <i>Modifier</i>: multiply (*) <i>Modifier_default</i>: 0.7071

Table 154: MultiFilter control inputs

Table 155, "MultiFilter internal parameters" below lists and describes **MultiFilter** internal parameter variables:

Name	Туре	Default Value	Description
EndBand	float32	965.4772	Specifies the end of the bandwidth affected by the fil- ter settings. Not adjustable. For <i>BandPass</i> , <i>BandPassUnityGain</i> and <i>Notch</i> , this variable spe- cifies the right -3 dB corner frequency in Hertz. For <i>PeakingEQ</i> filters, this specifies the midpoint fre- quency in Hertz.
FilterType	filter_type3	LowPass	Determines the type of filter applied to the input sig- nal. To disable filtering, set <i>FilterType</i> to OFF .
Order	filter_order	_12dB_Per_ Octave	Determines the order of the filter applied to the input signal. Second, fourth, and sixth orders are available, corresponding to 12, 24, and 36 dB per octave roll-off in <i>LowPass</i> , <i>HighPass</i> , <i>LowShelf</i> , and <i>HighShelf</i> fil- ters and 6, 12, and 18 dB per octave roll-off in <i>BandPass</i> , <i>BandPassUnityGain</i> , <i>Notch</i> and <i>Peak- ingEQ</i> , assuming <i>QFactor</i> is fixed at 0.7071. Gen- erally, the higher this control, the steeper the roll-offs.
StartBand	float32	258.9393	Specifies the start of the bandwidth affected by the fil- ter settings. Not adjustable. For <i>BandPass</i> , <i>BandPassUnityGain</i> , and <i>Notch</i> , this specifies the left -3 dB corner frequency in Hertz. For <i>PeakingEQ</i> , this variable specifies the midpoint frequency in Hertz.

Table 155: MultiFilter internal parameters

7.5 PropRotor

Summary: PropRotor generates the composite sound for a rotating helicopter blade.

Description: **PropRotor** includes the three principal sources of noise:

- Air noise from the movement of air over the blades
- Force noise from the impact of the blade with the air medium
- Thickness of noise due to the dual edge sound sources on a blade

Tune the overall sound based upon blade parameters, such as radius and blade count. Overall gain control is based on both revolutions per minute (RPM) and blade angle.

Table 156, "PropRotor audio input and output" below lists and describes the **PropRotor** audio input and output variables:

Name	Туре	Default Value	Description	
Audio Input				
InSignal	audio	N/A	Link to external noise source. To be used instead of the PropRotor internal noise source if desired.	
Audio Output				
OutputSignal	audio	N/A	Audio output from PropRotor .	

Table 156: PropRotor audio input and output

Table 157, "	'PropRotor	control inputs	" below	lists and	l describes	PropRotor	control input vari-	
ables:								

Name	Туре	Default Value	Description
Angle	float32	1.0	Provides the blade angle value.
ForceGain	float32	1.0	The gain for the principle component of the blade sound due to the air force on the blade. If a function connection is not made, this gain equals the scale factor.
LagFilter	float32	1.0	Provides a limiting filter used for fade-in and fade- out effects.
NoiseGain	float32	1.0	The gain for the air noise part of the blade sound.
			If the function connection is not made, then <i>Noise</i> <i>Gain</i> = <i>Scale Factor</i> .
OutputGain	float32	1.0	Amplitude gain of prop/rotor output. If the gain con- nection is blank, then the gain scale factor equals the gain value. Otherwise, <i>Gain = Scale Factor</i> × <i>Output</i> , where <i>Output</i> represents the output result of the control component.
Radius	float32	1.0	Scales the tip mach speed based on the blade radius (m).
RPM	float32	1.0	Frequency in RPM of the rotor shaft.
ThicknessGain	float32	1.0	Gain of the airflow sound determined by blade thick- ness.
QFactor	float32	1.0	Quality factor for the air noise filter. If the <i>QFactor</i> connection is blank then the <i>Q</i> scale factor equals the <i>Q</i> value. $Q = Scale Factor \times Output$, where <i>Output</i> represents the output result of the control object.

 Table 157: PropRotor control inputs

Table 158, "PropRotor internal parameters" below lists and describes **PropRotor** internal parameter variables:

Name	Туре	Default Value	Description
FilterFreqScale	float32	4.0	The scale factor for noise filter roll-off frequency.
FilterType	filter_type2	BandPassQ	 Selects a two-pole filter type from the following: Lowpass Bandpass Highpass LowpassQ BandpassQ HighpassQ HighpassQ The latter three are amplitude-adjusted such that the filter has unity gain at the roll-off frequency and maintains this gain as the quality factor increases. For the bandpass filters, the lowpass and highpass poles have the same roll-off frequency.
MachLimit	float32	.950	A limit for the calculated tip mach speed. This keeps the maximum mach speed to a pre- determined maximum. Usually 0.95 and 0.99, depending how dominant a thickness noise is required. The sound model is not accurate above 0.99 since supersonic effects start to dominate the sound spectrum.
NumberOfBlades	uint8	6	Number of blades on the shaft.

 Table 158: PropRotor internal parameters

7.6 SpeakerEQ

Summary: **SpeakerEQ** automatically equalizes a speaker by comparing referenced and measured sound responses.

Description: SpeakerEQ has three different modes of operation. PASS_THROUGH mode sends the *ModelIn* input signal directly to the speaker, disabling the filters. Use this mode to initially test the component during model setup. A *ModeControl* value of **0** initiates PASS_THROUGH mode.

ANALYZE_REFERENCE mode compares reference audio (i.e., *ReferenceIn*) to microphone audio (i.e., *MicIn*) and generates filters for speaker equalization. In other words, **SpeakerEQ** changes the filter settings applied to the *ModelIn* signal and analyzes how those changes impact the *MicIn* signal. A *ModeControl* value of 1 sets the component to ANALYZE_REFERENCE mode.

During ANALYZE_SPEAKER mode, **SpeakerEQ** routes *ModelIn* audio from the simulation's sound model to the speaker. A reference microphone connected to an ACU2 collects and returns the speaker frequency response via the *MicIn* input. **SpeakerEQ** then compares the microphone audio to the pink noise *ReferenceIn* signal, which represents a flat frequency response. **SpeakerEQ** applies a set of filters to the *MicIn* signal so the speaker's frequency response matches *ReferenceIn* and *ModelIn*. It then routes the equalized sound back to the speaker via *OutSignal*. By default, analysis takes 90 seconds to complete and automatically transitions to PROCESS mode.

Note: *While a flat frequency response is ideal in most cases, the component can match any reference response curve.*

Figure 19, "SpeakerEQ Analyze mode" below shows **SpeakerEQ's** feedback loop during ANALYZE mode:

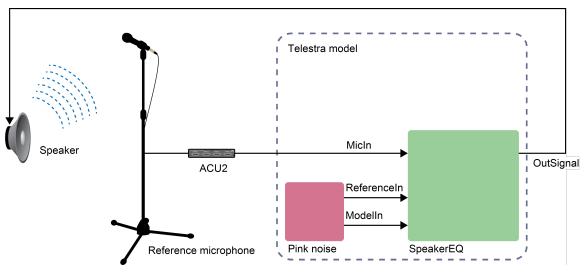


Figure 19: SpeakerEQ ANALYZE mode

PROCESS mode maintains the speaker's equalization. During PROCESS mode, the component applies a bank of audio filters to the *ModelIn* signal and sends the result to *OutSignal*. During PROCESS mode, it saves the filters' frequencies and gains to a file and recalls them during project installation. Back up and restore these speaker-specific features in the Telestra web interface. A *ModeControl* value of **3** initiates PROCESS mode. Table 159, "SpeakerEQ audio inputs" below lists and describes **SpeakerEQ's** audio input variables:

Name	Туре	Default Value	Description
MicIn	audio	N/A	Audio coming from the spectral analysis microphone.
ReferenceIn	audio	N/A	A signal with a frequency response curve. This input sets a reference signal used in the analysis. Most of the time, <i>ReferenceIn</i> uses pink noise, which rep- resents a flat frequency response (i.e., feedback with minimal distortion from the speaker). <i>ReferenceIn</i> is only used for tuning.
ModelIn	audio	N/A	Simulation audio from the AuralCue sound model to which you will apply the filter.

Table 159: SpeakerEQ audio inputs

Table 160, "SpeakerEQ audio output" below lists and describes **SpeakerEQ's** audio output variable:

Name	Туре	Default Value	Description
OutSignal	audio	N/A	Filtered audio output that usually routes to the speaker.

Table 160: SpeakerEQ audio output

Table 161, "SpeakerEQ control inputs" below lists and describes Speaker	EQ control input
variables:	

Name	Туре	Default Value	Description
ModeControl	uint8	0	 A value of 1 runs SpeakerEQ through two states: ANALYZE: compares reference audio to microphone audio PROCESS: applies a filter yielding a flat response A value of 0 sets <i>ModeControl</i> in PASS_THROUGH mode, which disables the current filter. A value of 3 sets SpeakerEQ's state to PROCESS using the default saved filter, if one exists.
MaxBoost_dB	float64	6.0	The maximum filter boost that the filter applies for any given third octave frequency band, measured in decibels. If you notice a steady state difference between the filtered audio and reference audio, increase the value by that number.

Table 161: SpeakerEQ control inputs

Table 162, "SpeakerEQ control output" below lists and describes the **SpeakerEQ** control output variable:

Name	Туре	Default Value	Description
ModeOut	ModeOut	N/A	SpeakerEQ's current state:
			 0 = PASS_THROUGH 1 = ANALYZE 3 = PROCESS
			Use this variable to control host feedback. When equalization is complete, <i>ModeOut</i> automatically changes to PROCESS.

Table 162: SpeakerEQ control output

Table 163, "SpeakerEQ internal parameters" below lists and describes **SpeakerEQ** internal parameters and debugging variables:

Name	Туре	Default Value	Description
SpeakerNumber	int32	0	A unique number that identifies each speaker.
NumTuningPasses	int32	10	The total number of passes. For higher accuracy, let <i>NumTuningPasses</i> cycle more than 10 times.
PassDuration	float64	9.0	The approximate duration of each pass in seconds.
AnalysisCutoffFreqHigh	int32	0	Above a certain frequency, does not apply the correction filter to the signal; measured in hertz (Hz). For example, a typical high cutoff frequency for a subwoofer is 200 Hz.
AnalysisCutoffFreqLow	int32	0	Below a certain frequency, this variable does not apply the correction filter to the signal; measured in Hz. For example, a typ- ical low cutoff frequency for a bookshelf speaker is 150 Hz.

Table 163: SpeakerEQ internal parameters

Table 164, "SpeakerEQ debugging variables" below lists and describes **SpeakerEQ** debugging variables:

Name	Туре	Default Value	Description
CurrentAPass	int32	0	Displays a number ranging from 1 to (<i>NumTun-ingPasses</i> value × 10), indicating the progress of each pass.
CurrentTPass	int32	0	Displays current pass number.

Table 164: SpeakerEQ debugging variables

7.6.1 Set up and run SpeakerEQ

To set up and run **SpeakerEQ**, follow these steps:

- STUDIO Project Manage Project Layout Tools Admin Help 🖻 🗙 🖄 🐉 👄 C SpeakerEQ_Example_Project:teles 🗸 Icon View Text SpeakerEQ Example Project domain Channels T T Commplans mathplans filterplan ilterplans <u>filterplans</u> domains ACU3 hosts **** sound_repositories Image: mathplan hosts ioads ACU2 models channels 🗐 <u>servers</u> commplan testplans
 hitplans ACU1 110 Stephans Stephans Cellplans sounds 5 \$ load

Figure 20: Open Studio Viewer Telestra Server

2. In Studio Viewer Telestra Server, under System Load, choose a simulation model for SpeakerEQ (e.g., AuralOuts).

Syste	em Load Model Edit	Tools <u>H</u> elp							
1	🖀 🚽 😂	2 🕨 🗉	and the second s	oom out	1.000 zoom in				
	m Load		Mod	lels Buses HostP	kts Bus Links	Host Links			
▼ 🖧	load			Name	Category	Instance of	Bus Links Group	Description	
	S AC_Packs	AC_Packs	Viev	RecirculationFans	SimModel	RecirculationFans	1	None	
	S APU	APU	View	Flaps_and_Slats	SimModel	Flaps	1	None	
	AeroNoise	AeroNoise	View	channels	HardwareModel	channels	9	None	
		AuralCuePositions	View	DataAnalysis	SimModel	DataAnalysis	2	None	
	AuralOuts	AuralOuts	Viev	load-services	ServiceModel	load-services	0	None	
	Bird_pod_strikes	Bird_Pod_Strikes	Viev	Left_Engine	SimModel	Left_Engine	2	None	
Þ	Cargo_Doors	Cargo_Doors	Viev	Crash	SimModel	Crash	1	None	
Þ	Cockpit_Fans	Cockpit_Fans	- Mey	Rind nod strikes	SimModel	Rind Pod Strikes	2	None	
iews		1 1							
				GocKpit_Fa					

Figure 21: Select simulation model

- 3. Right-click in Views, and select Add from the list.
- 4. In Add to Model : *Model Name*, expand EnvCue, and select SpeakerEQ.
- 5. (Optional) In Item Name, enter a name for the SpeakerEQ component.

6. Select Add, and wait for the component to install. When "Added Successfully" displays, close the window.

Add to Model: 'AuralOuts'	
Items Palette	
▶ CommPanel	
Control	
Dynamics	
▼ EnvCue	
5BandFilter	
Engine	=
EngineLevelD	
FilterBank	
JetEngine	
MultiFilter	
PropRotor	
SpeakerEQ	
VibrationCapture	
Highway	
▶ IOInterfaces	~
Destination Folder : AuralOuts:/	<u>change</u>
Item Name : EnvCue_SpeakerEQ	
<u>C</u> ancel <u>A</u> c	ld

Figure 22: Add SpeakerEQ component to model

- 7. In Views, open the new SpeakerEQ component.
- 8. From Data Viewer, next to SpeakerNumber, double-click in the Value column.
- 9. In Set Value, enter an ID number for the speaker, and select OK.

		1 1 1								
Data	Lin	ks Schematic Info	/iew/Edit Descri	ption						
							\checkmark	Filter View	Full View	
F	rom	Variable	Туре	Value	Ор	Modifier	Result	То		
		SpeakerNumber								
-		ModeControl	uint8	0	+	0	0			
		ActiveMode	spkr_eq_mode	PASS_THROUGH						
\geq		ModeOut	ModeOut	Set Set	0.0-0		(2)			
		AnalysisCutoffFreqHigh	int32		vai	ue				
		AnalysisCutoffFreqLow	int32	1						
		MaxBoost_dB	float64	Cancel	١٢	<u>о</u> к				
> -		MicIn	audio							
> -		ReferenceIn	audio							
> -		Modelln	audio							
\geq		OutSignal	audio							
		CurrentAPass	int32	0						
		CurrentTPass	int32	0						
		NumTuningPasses	int32	10						
		PassDuration	float64	9.0						

Figure 23: Set SpeakerNumber value

10. Set the *AnalysisCutoffFreqHigh* and *AnalysisCutoffFreqLow* values applicable to your speaker type. Values are measured in Hertz (e.g., enter **10,000** for 10 kHz).

				AuralOuts:Env	Cue_SpeakerEC) (R	oot) - Ace	Data V	lewer		
Er	۱vC	Cu	e SpeakerEQ 🗉	nvCue/SpeakerE	Q] 🔯						
Da	ata	Lir	nks Schematic Info	View/Edit Descri	ption						
								\checkmark	Filter View	Full View	
	Fro	m	Variable	Туре	Value	Op	Modifier	Result	То		
			SpeakerNumber	int32	1						
			ModeControl	uint8	0	+	0	0			
			ActiveMode	spkr_eq_mode	PASS_THROUGH						
₽			ModeOut	ModeOut		t Va)me	X			
			AnalysisCutoffFreqHigh	int32		va	ue				
					150						
			MaxBoost_dB	float64	Cancel	16	<u>0</u> K				=
Þ			MicIn	audio							
₽			ReferenceIn	audio							
₽			Modelln	audio							
Þ			OutSignal	audio							
			CurrentAPass	int32	0						
			CurrentTPass	int32	0						
			NumTuningPasses	int32	10						
			PassDuration	float64	9.0						~

Figure 24: Set AnalysisCutoffFreq values

11. Link *MicIn* to an existing **ACU2channel**. For more information about **ACU2channel**, go to Section 11.4, "ACU2channel" on page 181.

Caution: To avoid damaging your speakers, do not run *SpeakerEQ* without connecting a microphone to MicIn.

12. Link *ReferenceIn* and *ModelIn* to an existing **Playsound** or **NoiseSource** component with pink noise. For a flat frequency response, ensure *ReferenceIn* and *ModelIn* match.

Γ		
	\equiv	

Note: Playsound or *NoiseSource* serve as a substitute during tuning. Once tuning is complete, you may want to replace the pink noise with a component containing audio from your simulation model.

ata	Links Schematic Info View	w/Edit Description							
						- 🗸 [Filter View	Full View	
	From	Variable	Туре	Value	Op	Modifier	Result	То	
		SpeakerNumber	int32	1					
	SpeakerEQ/LeftFwd_EQ_State	ModeControl	uint8	3	+	0	3		
		ActiveMode	spkr_eq_mode	PROCESS					
•		ModeOut	ModeOut						
		AnalysisCutoffFreqHigh	int32	0					
		AnalysisCutoffFreqLow	int32	150					
		MaxBoost_dB	float64	6.0	+	10.0	16.0		
N	SpectralMic_conn/AudioIn	MicIn	audio						
~		active	boolean	TRUE			TRUE		
		audio	audio	View Scope			View Scope		
•	Mixer_LeftFwd/OutSignal	ReferenceIn	audio						
•	Mixer_LeftFwd/OutSignal	Modelln	audio						
•		OutSignal	audio					AMP_LeftFwd/AudioOuts	
		CurrentAPass	int32	0					
		CurrentTPass	int32	0					
		NumTuningPasses	int32	10					
		PassDuration	float64	9.0					

Figure 25: Set MicIn, ReferenceIn, and ModelIn audio inputs

For more information about **Playsound**, go to Section 2.17, "Playsound" on page 42. For more information about **NoiseSource**, go to Section 2.14, "NoiseSource" on page 36.

13. Next to *ModeControl*, double-click in **Modifier**. In **Set Modifier Value**, enter 1, and select **OK**.

14. Wait for **SpeakerEQ** to cycle through the set number of passes in *CurrentTPass* **Value**. By default, it runs through 10 passes. When finished, *ActiveMode* displays "PROCESS," and *CurrentAPass* and *CurrentTPass* display "0."

Data	Links	Schematic	Info Viev	v/Edit De	escription						
								Fu	ll View		
	From			Va	riable	Туре	Value	Op	Modifier	Result	
				Sp	peakerNumber	int32	1				
				M	odeControl	uint8	0	+	1	1	
				Ac	tiveMode	spkr_eq_mode	PROCESS				
Þ				M	odeOut	ModeOut					
				Ar	nalysisCutoffFreqHigh	int32	0				
				Ar	nalysisCutoffFreqLow	int32	150				
				Ma	axBoost_dB	float64	6.0	+	0.0	6.0	
Þ	lOintei	faces_ACU2d	hannel/Aud	<mark>lioln</mark> Mi	icIn	audio					
Þ				Re	eferenceln	audio					
⊳				M	odelln	audio					
Þ				O	utSignal	audio					
				Cu	urrentAPass	int32	0				
				Cu	urrentTPass	int32	0				
				N	umTuningPasses	int32	10				

Figure 26: PROCESS mode

7.6.2 Tune SpeakerEQ

After you set and run **SpeakerEQ**, compare the *MicIn* and *ReferenceIn* signals for audio differences. If needed, adjust their frequencies, and rerun the component. To tune **SpeakerEQ**, follow these steps:

1. In Data Viewer, expand *MicIn*. Next to audio, in the Value column, open View Scope.

Data	Links	Schematic Info Vie	w/Edit Descriptio	on						
							of Filter V	ïew	Full View	
	From	Variable	Туре	Value	Op	Modifier	Result	То		
		SpeakerNumber	int32	1						
		ModeControl	uint8	0	+	0	0			
		ActiveMode	spkr_eq_mode	PASS_THROUGH						
⊳		ModeOut	ModeOut							
		AnalysisCutoffFreqHigh	int32	0						
		AnalysisCutoffFreqLow	int32	150						
		MaxBoost_dB	float64	6.0	+	0.0	6.0			
$\overline{\nabla}$		MicIn	audio							
		active	boolean	FALSE			FALSE			
		audio	audio	View Scope			View Scop	•		
⊳		ReferenceIn	audio							
⊳		Modelln	audio							
⊳		OutSignal	audio							
		CurrentAPass	int32	0						
		CurrentTPass	int32	0						

Figure 27: View MicIn scope

The /*Component* - AnalyzerIn(Result).audio window opens, displaying the *MicIn* signal.

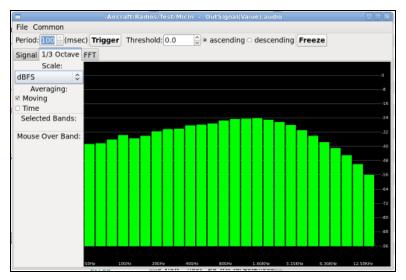
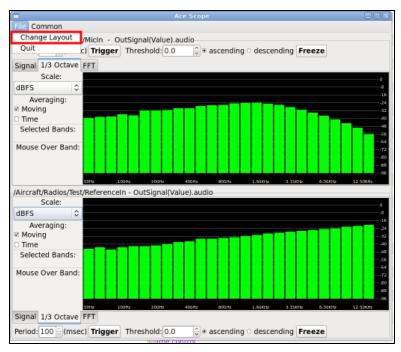



Figure 28: MicIn audio signal

2. In **Data Viewer**, expand *ReferenceIn*. Next to **audio**, in the **Value** column, right-click **View Scope**, point to **Add to Scope**, and select the *ReferenceIn* audio file.

		Au	ralOuts:EnvCu	e_SpeakerEQ (F	loot) - Ace Da	ita Viewer				
Env	Cue_	SpeakerEQ [EnvO	ue/SpeakerEQ]	Ø							
Data	Links	Schematic Info View	w/Edit Descriptio	n							
								iew	Full View		
	From	Variable	Туре	Value	Op	Modifier	Result	То			
		SpeakerNumber	int32	1							
		ModeControl	uint8	0	+	0	0				
		ActiveMode	spkr_eq_mode	PASS_THROUGH							
Þ		ModeOut	ModeOut								
		AnalysisCutoffFreqHigh	int32	0							
		AnalysisCutoffFreqLow	int32	150							
		MaxBoost_dB	float64	6.0	+	0.0	6.0				
~		MicIn	audio								
		active	boolean	FALSE			FALSE				
		audio	audio	View Scope			View Scope				
\bigtriangledown		ReferenceIn	audio								
		active	boolean	FALSE			FALSE				
		audio	audio	View Scope			View Scope				_
Þ		Modelln	audio					Add t	to Scope 🔰	/EnvCueSpeakerEQ - AnalyzerIn(Result)).aud
⊳		OutSignal	audio							v	

Figure 29: Add ReferenceIn to scope

3. In the Scope, on the File menu, select Change Layout.

Figure 30: Change Layout

4. In Change Layout, select the list, and then select Comparison. In Comparison, select OK.

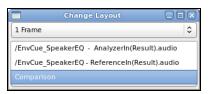


Figure 31: Comparison layout

5. The scope view now displays a comparison of the *MicIn* and *ReferenceIn* signals. In **Y Range**, enter **20**, and press Enter.

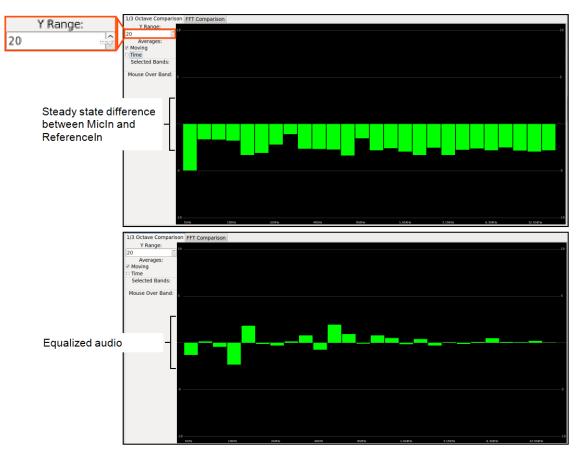


Figure 32: MicIn/ReferenceIn comparison

In the example above, the top comparison shows a steady state difference of 5 decibels (dB), whereas the bottom comparison shows equalized audio.

- 6. If a difference greater than 2 dB exists, check the recommended high and low cutoff frequencies for your speaker type.
- 7. Increase *MaxBoost_dB* by the difference amount (e.g., 5 dB), and rerun **SpeakerEQ**.

Caution: To avoid damaging the speaker, check your speaker's limitations before adjusting MaxBoost_dB.

- 8. If a difference still exists, lower *ReferenceIn*'s gain, and rerun SpeakerEQ.
- 9. If your speaker setup changes after tuning, reprocess **SpeakerEQ** to ensure the speakers are still equalized correctly. To put the component in PROCESS mode, set *ModeControl* to **3**, and save your changes.

7.7 VibrationCapture

Summary: The **VibrationCapture** component records an input signal specifically for use with ASTi's Vibration Analysis tool kit.

Description: This component is a simplified version of **RecordReplay**. The capture length defaults to 30 seconds, and continuous recording is not allowed. The *Record* parameter controls the recording, when true recording begins.

The captured file results in a Telestra sound recording (.tsr) file with 32-bit float values recorded at 48 kHz with a name based on the *GroupID* and *SoundIndex*. The file is written to the hard drive under /var/local/asti/recordreplay. **VibrationCapture** always starts recording at the beginning of the file, and it cannot start in the middle. The recording always overwrites the file from the beginning.

Table 165, "VibrationCapture audio input" below lists and describes the **VibrationCapture** audio input variable:

Name	Туре	Default Value	Description
SignalIn	audio	N/A	Audio linked into this position is recorded and written to the record file on the hard drive.

Table 165: VibrationCapture audio input

Table 166, "VibrationCapture control inputs" below lists and describes **VibrationCapture** control input variables:

Name	Туре	Default Value	Description
Gain	float32	1.0	Amplitude gain control for the capture file, which can be set via the host or internally.
SoundIndex	uint16	0	Identifies the file. Each file is organized as part of a group with a specific index that names the Tracker Status Report file. The file is written to the hard drive under /var/local/asti/recordreplay.

Table 166: VibrationCapture control inputs

Table 167, "VibrationCapture control outputs" below lists and describes **VibrationCapture** control output variables:

Name	Туре	Default Value	Description
FileMode	player_state	STOPPED	Displays the recording state of the file. Possible states are STOPPED and RECORDING.
Record	Boolean	FALSE	When TRUE , the component starts recording.

Table 167: VibrationCapture control outputs

Table 168, "VibrationCapture internal parameter" below lists and describes the **VibrationCapture** internal parameter variable:

Name	Туре	Default Value	Description
Length	uint32	30	Set to the number of seconds to record vibration at a 48 kHz sample rate. A value of 30 is the expected length for the Vibration Analysis.

 Table 168: VibrationCapture internal parameter

7.8 FilterBank

Summary: FilterBank is a simple method of installing a series bank of 15 configurable filters in a signal path.

Description: FilterBank points to a filter stored in a **FilterPlan** available for viewing and adjustment from the **Project Manager**. Each filter is comprised of 15 filters in series. Each of these 15 filters is fully configurable from the **FilterPlan**.

Table 169, "FilterBank audio input and output" below lists and describes **FilterBank** audio input and output variables:

Name	Туре	Default Value	Description
Audio Inputs			
InSignal	audio	N/A	Audio input that FilterBank filters.
Audio Outputs	i i i i i i i i i i i i i i i i i i i		
OutSignal	audio	N/A	Filtered audio output from FilterBank.

Table 169: FilterBank audio input and output

Name	Туре	Default Value	Description
FilterName	filter_name	N/A	Pointer to a bank of 15 filters in the FilterPlan .
MasterGain	float32	1.0	Gain applied to FilterBank's audio output.

Table 170, "FilterBank control inputs" below lists and describes FilterBank control inputs:

7.9 FilterPlan

Summary: FilterPlan is a storage and management location for a set of filters that the FilterBank component may reference.

Description: In **FilterPlan**, store filters by name. Each filter contains 15 filter sections, which you can designate as one of the following types:

- LowPass
- HighPass
- BandPass
- BandPassUnityGain
- Notch
- AllPass
- PeakingEQ
- LowShelf
- HighShelf

In each filter section, store the following values:

- CenterFrequency
- QFactor
- Gain (dB)

You can also set and store the set's *MasterGain*. To implement **FilterPlan** edits when applying changes, select **Notify Telestra Server**. As a result, you won't need to save and reload the layout after every change.

8.0 Highway Service

Summary: Highway Service provides audio distribution for aural cues from components in Telestra to the outside world. The need for a specialized service to handle aural cue audio is driven by the fact that aural cues are generated by multiple sources whose output is typically sent to multiple channels (e.g., left speaker, right speaker). **Highway Service** handles both the mixing of audio from multiple sources and the routing of the composite audio to multiple channels.

Highway Service supports 128 independent output channels. The service receives audio from a set of **Balancers**. Each **Balancer** sends a stream of audio to the service with applied gains for the audio on each of the 128 highways. The service mixes the audio sources for a given highway to create a composite audio stream for each highway. The service applies highway gains that it receives from **HighwayGain**. This set of gains includes an overall output gain that affects all highways and individual highway gains that affect all audio on a given highway. The service sends the composite audio to **HighwayOut**, which is tuned to one and only one highway. **Highway Service** supports input connections from only **Balancer** and **HighwayGain** and output connections to only **HighwayOut**.

As with all service components, you cannot manually instigate the creation of the service object. Instead, the loader automatically creates service objects on demand when it detects that a component has a **Highway Service** port connection. Only one **Highway Service** is loaded in a model based on the first found need for a service of this type.

Description: Highway Service receives an audio input and an array of 128 gain values, one for each highway, and from Balancer. The Highway Service can connect to up to 1,024 Balancers. The connection from Balancer to Highway Service is unidirectional for audio data. The Balancer is always the audio source while the highway service is always the audio sink.

For each **Balancer** connection, the highway service makes 128 copies of the audio and applies a different gain value to each copy. The gain values come from the gain value array that **Balancer** provides. The output from this step is a set of 128 audio streams, one for each highway, per **Balancer**.

Highway Service mixes the audio from the various **Balancers** for a given highway into a final audio output for that highway.

Highway Service also receives an input connection from **HighwayGain**, which provides an overall output gain and 128 individual highway gains. The highway service applies the gains it receives from **HighwayGain** to the composite audio on each highway. Each model may contain only one **HighwayGain**. The model loader throws an error you attempt to add a second **HighwayGain**. If there is a **HighwayGain** in the model, the highway service uses a value of 1.0 for these gains.

The output connection from **Highway Service** goes to a **HighwayOut**. This output connection is unidirectional for audio data. **Highway Service** is always the audio source while **HighwayOut** is always the audio sink. Multiple **HighwayOuts** may point to the same highway channel.

The service must also support the flow through *Active_TX* to indicate the state of audio activity on a highway. Only set *Active_TX* if audio is present and a non-zero gain value at a given point in the path.

Highway Service also supports diagnostic facilities to allow you to view the use of a highway within the model and the current highway gain settings. This functionality scans the model for all **HighwayOuts** and **HighwayGains**, and extracts the information into a table-like view, as demonstrated in the following example:

The handle view displays all **HighwayOuts**, including paths connected to each handle and gains associated with each highway.

The following text shows an example of displayed information:

```
Overall Output Gain = 1.0
Left_Speaker (Gain = 0.5) --->
Aural_Cues / Left_Speaker_Sounds > HighwayOutput_A
Aural_Cues / Left_Speaker_Sounds > HighwayOutput_B
Seat_Shaker (Gain = 0.8) --->
Some_Folder1 / Some_Folder2 / Vibration_Output > HighwayOutput_C
```

8.1 AuralCue

Summary: Inputs audio into the **Highway Service** and associates the audio with a name or "cue ID."

Description: AuralCue places an audio signal on a bus in the speaker service. From here, AuralCuePosn references that particular bus and gives it a position in the 3D audio environment. At this point, **SpeakerOutput** retrieves the audio at the correct amplitude and phases to position the sound correctly in the 3D environment.

Table 171, "AuralCue audio input" below lists and describes the **AuralCue** audio input variable:

Name	Туре	Default Value	Description
InSignal	audio	N/A	The audio signal routed to a specific position.

Table 171: AuralCue audio input

Name	Туре	Default Value	Description
Gain	float32	1.0	A gain applied to the input audio streams.

Table 172, "AuralCue control input" below lists and describes the AuralCue control input:

Table 173, "AuralCue internal parameter" below lists and describes the **AuralCue** internal parameter:

Name	Туре	Default Value	Description
Cue	ID	UNASSIGNED	A name given to this audio source. For example, add and select a cue called <i>Engine</i> and route all engine audio into AuralCue . Note : Generate meaningful names for better read- ability in the model. Reference this cue name in a corresponding component.

Table 173: AuralCue internal parameter

8.2 AuralCuePosn

Summary: Adds the selected sound to the sound field at the specified (X, Y, Z) position.

Description: In an aircraft model, you might have an **AuralCuePosn** with a *CueID* called "LeftEngine" positioned at X = -3.0, Y = 3.0, Z = 0.0. This means that the audio fed into *CueID* is positioned to the back-left of the reference point. Once a cue is added to the sound field with this component, add either a **Highway** > **SpeakerOutput** or an **AudioIO** > **SpeakerOutput** to get audio from the sound field.

Table 172: AuralCue control input

Table 174, "AuralCuePosn Position control inputs" below lists and describes **AuralCuePosn** *Position* control input variables:

Name	Туре	Default Value	Description
X	float64	0.0	X coordinate relative to the reference point. Positive X is in front and negative X is behind reference point.
Y	float64	0.0	Y coordinate relative to the reference point. Positive Y is to left, and negative Y is to right of reference point.
Ζ	float64	0.0	Z coordinate relative to the reference point. Positive Z is above, and negative Z is below the reference point.

Table 174: AuralCuePosn Position control inputs

Table 175, "AuralCuePosn internal parameter" below lists and describes the **AuralCuePosn** internal parameter variable:

Name	Туре	Default Value	Description
CuelD	id	UNASSIGNED	Selects <i>CueID</i> specified in AuraICue for pos- itioning.

Table 175: AuralCuePosn internal parameter

8.3 SpeakerOutput

Summary: Retrieves audio from the **Highways** sound field intended for a speaker at the specified X, Y, Z position.

Description: SpeakerOutput creates a speaker in Highway Service with the specified X, Y, and Z coordinates relative to the sound field reference point, extracting the audio from the service for the speaker. The X, Y, and Z position should correspond to the speaker's physical location. Typically, *AudioOut* links directly to an AmpOut audio out.

For example, for an eight-channel amplifier to drive an eight-speaker setup, the model should contain eight **SpeakerOutputs** linked to eight **AmpOuts**.

Table 176, "SpeakerOutput audio output" below lists and describes **SpeakerOutput** audio output and internal parameter variables:

Name	Туре	Default Value	Description
AudioOut	audio	N/A	Audio for this speaker.

 Table 176: SpeakerOutput audio output

Table 177, "SpeakerOutput internal parameters" below lists and describes **SpeakerOutput** internal parameters:

Name	Туре	Default Value	Description
Position	worldposition_ geocentric	(0,0,0)	The X, Y, and Z position of the speaker relative to the reference point. The coordinate system is the same as the one used in Highway > Aur- alCuePosn (i.e., +X is forward, +Y is to the left, +Z is up).
SourceSpeaker	id	UNASSIGNED	Selects the speaker for sound positioning.

Table 177: SpeakerOutput internal parameters

9.0 Highway 3D Service

The **Highway 3D** Service is a collection of components used for mixing and routing audio to hardware output channels. The service provides two approaches for audio mixing:

- Gain-Mixing
- 3D Soundfield Reconstruction

These approaches are useful for a range of applications, from routing communications audio to operator headsets to immersing listeners in a 3D audio environment.

Gain-mixing is the simpler approach and represents the more traditional way of mixing audio. Sounds are sent to a set of output "highways" using a set of gains that are driven by the host or calculated in the model. Gain-mixing using the **Highway 3D Service** allows you to easily route audio from simulation models to hardware models, making it an attractive alternative to using connectors and buses.

The 3D Soundfield Reconstruction (SFRC) is a sophisticated method of processing sounds to make them appear to come from somewhere in 3D space around the listener(s). Sounds are assigned (X, Y, Z) positions relative to the listening or reference point. The **Highway 3D Service** then filters and mixes each sound based on its position in order to encode the sound into a virtual 3D sound environment or sound field.

Once all the sounds are encoded, the sound field is decoded for playback in stereo headphones or an array of speakers. If decoding to headphones, two output streams are output for the left and right earphones. The head's orientation is used in this calculation if it is available from a head-tracking system. If decoding to a speaker array, the service outputs one audio stream for each speaker, taking into account the speaker's (X, Y, Z) position.

All positions used in the service must be specified in meters relative to the listening or reference position. The reference position should be the central listening point of the simulator, such as the midpoint between the pilot's and copilot's heads. This approach ensures the service renders the sounds in a way that sounds best to all listeners. Use the following coordinate system when calculating **RelativePositions** of sounds and speakers:



Figure 33: RelativePositions in sound coordinate system

The 3D positioning algorithm used by the service calculates a contribution from each speaker for each sound, even if the speaker is not precisely in the right direction. This results in realistic and immersive reproduction of many types of sounds.

If a sound outputs only through one speaker, use gain-mixing or connectors and buses instead of SFRC.

Highway 3D Service requires a three-step process that includes entering audio into the service, determining how it is mixed or processed, and extracting audio for the outputs from the service.

The Highway 3D Service components include the following:

For input into the service: Audio Feed

- For controlling gain-mixing or 3D positioning of a sound:
 - Feeders > Balancer1, 4, 8, 16
 - Feeders > AuralCuePosn
- For extracting audio from the service:
 - AudioIO > HighwayOut
 - AudioIO > SpeakerOut
 - AudioIO > Headphone3DOut

To set Highway 3D Service, follow these steps:

- 1. Add **AudioFeed** in a simulation model to input a sound into the service. Add more **AudioFeeds** for other sounds if they need mixing or independent positioning. Create and select new sound names or "cue IDs" to identify the sound in the service.
- 2. Add **Balancer***N* in a **Feeders** model to gain-mix a sound to the output highways. Select the cue ID of the sound used for mixing, and choose or create the highways. Mix the sound's output highways to determine the **Balancer's** size. Link the gains from the host or elsewhere in the load if desired, or just set static gains by hand.
- 3. Add **AuralCuePosn** to a **Feeders** model to add a sound to the 3D sound field at a specified position. Select the cue ID of the sound that is then added to the sound field. Link to or set the (X, Y, Z) position inputs to determine the location of the sound in the sound field.
- 4. Add **HighwayOut** in a hardware model to extract audio from one of the output highways. Choose a highway and link the audio output of the component to a hardware output. This component only retrieves sounds added to the highways via **Balancer**, not **AuralCuePosn**.
- 5. Only sounds put onto the highways using **Balancer** components are retrieved by this component, not sounds that were positioned in the sound field using the **Aur-alCuePosn** component.
- 6. Add **SpeakerOuts** in a hardware model for each speaker in the simulator. Enter the (X, Y, Z) position of the speaker, and link the audio output to a hardware output. The service decodes the sound field to this speaker based on the specified position.
- 7. Add **Headphone3DOut** in a hardware model for operators that should have 3D audio in their stereo headphones. If head tracker information is available from the host, link it to the head azimuth and elevation inputs. Link the component's left and right audio outputs directly to the output channels for the left and right ear cups of the operator's headphones. Avoid adding other components between the **Headphone3DOut** and hardware components. The presence of other components on these audio streams can alter the timing and distort the apparent 3D position of the sound.

HighwayOut and **SpeakerOut** can be added to autogenerated hardware models using **Channel Helper**. Notice the *Highway*, *Speaker*, and *Speaker Position* options when creating ACE-RIU, ACU2, and amplifier channels in **Channel Helper**. Enter a highway name to create a **HighwayOut**, select the highway, and link the audio to the channel's audio out. Enter a speaker name and position to create a **SpeakerOut** created at that position with its audio linked to the channel's audio out. Figure 34, "Gain-mixing" below shows how to use the **Highway 3D Service** for gain-mixing warning tones to a set of output highways:

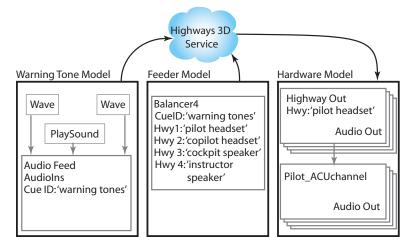


Figure 34: Gain-mixing

Figure 35, "Sound field reconstruction" below shows an example of using the **Highway 3D Service** for position weapons sounds in 3D and rendering the sound field to both a speaker array and a stereo headset:

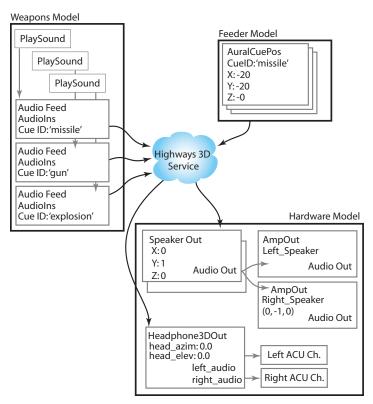


Figure 35: Sound field reconstruction

For more information, go to "Highway 3D Service" in the Studio Technical User Guide.

9.1 Audio > Audio Feed

Summary: Inputs audio into the **Highway 3D Service** and associates the audio with a name or "cue ID."

Description: AudioFeed is the first step when using the Highway 3D Service. First audio is linked to AudioFeed, and the cue ID is created and selected. Then this audio is mixed in a 3D or non-3D way using the other Feeders.

Table 178, "AudioFeed audio inputs" below lists and describes AudioFeed audio input variables:

Name	Туре	Default Value	Description
InSignals	audio[64]	N/A	An array of audio inputs. Up to 64 links can connect to this input. All of the incoming audio is mixed in this component.
InSignals	audio	N/A	Provides a view of all the mixed audio inputs.

Table 178: AudioFeed audio inputs

Table 179, "AudioFeed control input" below lists and describes the **AudioFeed** control input variable:

Name	Туре	Default Value	Description
Gain	float32	1.0	A gain applied to the input audio streams.

Table 179: AudioFeed control input

Table 180, "AudioFeed internal parameter" below lists and describes the **AudioFeed** internal parameter variable:

Name	Туре	Default Value	Description
Cue	ID	UNASSIGNED	A name given to this audio source. For example, add and select a <i>Cue</i> called Engine , and route all engine audio into this AudioFeed . Note : Generate meaningful names for better read- ability in the model. Reference this Cue name in a corresponding Balancer or AuralCuePosn .

Table 180: AudioFeed internal parameter

9.2 Feeders > AuralCuePosn

Summary: Adds the selected sound cue bus to the sound field at the specified (X, Y, Z) position.

Description: In an aircraft model, you might have an **AuralCuePosn** with a *CueID* called "Left Engine" positioned at X = -3.0, Y = 3.0, Z = 0.0. This means that the audio fed into this *CueID* with **AudioFeed** is positioned to the back-left of the reference point.

Once a cue is added to the sound field with this component, add either an AudioIO > Headphone3DOut or AudioIO > SpeakerOut to get audio from the sound field.

Table 181, "Feeders > AuralCuePosn control inputs" below lists and describes **Feeders** > **AuralCuePosn** control input variables:

Name	Туре	Default Value	Description
Gain	float32	1.0	Linear gain attached to the Cue.
X	float32	0.0	The X coordinate relative to the reference point. Positive X is in front and negative X is in back of the reference point.
Y	float32	0.0	The Y coordinate relative to the reference point. Pos- itive Y is left, and negative Y is right of the reference point.
Ζ	float32	0.0	The Z coordinate relative to the reference point. Positive Z is above and negative Z is below of the reference point.
W_Adjust	float32	1.0	Focus of the located sound.

Table 181: Feeders > AuralCuePosn control inputs

Table 182, "Feeders > AuralCuePosn internal parameters" below lists and describes **Feeders** > AuralCuePosn internal parameters:

Name	Туре	Default Value	Description
Cue	ID	UNASSIGNED	Selects the sound cue bus for positioning.

Table 182: Feeders > AuralCuePosn internal parameters

9.3 Feeders > Balancer1, 4, 8, 16

Summary: Mixes the selected sound cue bus to the selected highways with a set of gains. Balancer1 mixes to one Highway, Balancer4 to four Highways, etc.

Description: After inputting the audio into the **Highway 3D Service** using **AudioFeed**, **Balancers** mix the audio to output highways. **Balancers** provide simple gain mixing to the highways. No 3D calculations are involved. If positioning in 3D is desired, use **Feeders** > **AuralCuePosn**. For example, use **Balancer4** to mix a tone to four different highways where the audio from each highway is routed to an operator's headset.

Table 183, "Balancer control inputs" below lists and describes **Balancer** control input variables:

Name	Туре	Default Value	Description
Gain	float32	1.0	The gain applied to the cue's audio before it is mixed to the highways.
Gain1–Gain8	float32	1.0	An additional gain applied when mixing the cue's audio to each highway. <i>Gain1</i> affects mixing on the first selected highway, <i>Gain2</i> affects mixing on the second selected highway, etc.

Table 183: Balancer control inputs

Table 184, "Feeders > Balancer1, 4, 8, 16 internal parameters" below lists and describes **Feeders** > **Balancer1**, 4, 8, 16 internal parameter variables:

Name	Туре	Default Value	Description
Cue	id	UNASSIGNED	Selects the sound for mixing.
Highways	id[8]	UNASSIGNED	Selects which highways will receive audio. The number of highways varies based on the Balancer used (i.e., 1, 4, 8, or 16).

 Table 184: Feeders > Balancer1, 4, 8, 16 internal parameters

9.4 AudioIO > Headphone3DOut

Summary: **Headphone3DOut** retrieves the sound field from the service and filters it to reproduce the 3D environment in a pair of audio outputs for a stereo headset.

Description: Headphone3DOut generates 3D audio in the headphones of an operator. The operator's head is located at the sound field reference point (0, 0, 0). The component drives head azimuth and head elevation from the host based on values from a head tracking system. These values define the head's orientation relative to straight forward and cause the sound field to rotate accordingly.

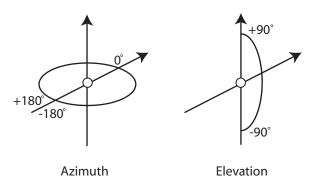


Table 185, "Headphone3DOut control inputs" below lists and describes **Headphone3DOut** control input variables:

Name	Туре	Default Value	Description
Enable	Boolean	TRUE	Enables and disables 3D filtering. If disabled, the sound field is mixed in mono to the left and right head-phone channels.
HeadAzim	float32	0.0	The orientation of the head in the horizontal plane. 90 degrees is directly to the left, and -90 degrees is directly to the right.
HeadElev	float32	0.0	The orientation of the head in the vertical plane, 90 degrees is directly straight up and -90 degrees is directly straight down.

Table 185: Headphone3DOut control inputs

Table 186, "Headphone3DOut audio outputs" below lists and describes **Headphone3DOut** audio output variables:

Name	Туре	Default Value	Description
LeftAudio	audio	N/A	The audio intended for the left ear cup of the head- phones.
RightAudio	audio	N/A	The audio intended for the right ear cup of the head- phones.

Table 186:	Headphone3DOut	audio	outputs
------------	----------------	-------	---------

9.5 AudioIO > HighwayOut

Summary: Extracts the specified highway's audio from the **Highway 3D Service**. *AudioOut* typically links directly to a hardware component's (ACE-RIU, ACU2, etc.) audio out.

Description: To create new highways, double-click **SourceHighway**, and add new buses in the service window. For example, add a highway for each speaker or headset. Name the highways based on the corresponding hardware that it is linked to (e.g., "PilotHeadset"). To put audio onto the highways, use **AudioFeed** and **Balancer**. **Balancer** takes audio from **Audi-oFeed** and puts it onto one or more highways.

Table 187, "HighwayOut audio output" below lists and describes the **HighwayOut** audio output:

Name	Туре	Default Value	Description
AudioOut	audio	N/A	The highway's audio.

Table 187: HighwayOut audio output

Table 188,	"HighwayOut control input"	below lists and	describes the H	ighwayOut control
input:				

Name	Туре	Default Value	Description
Gain	float32	1.0	A gain applied to the audio output.

Table 188: HighwayOut control input

Table 189, "HighwayOut internal parameter" below lists and describes the **HighwayOut** internal parameter:

Name	Туре	Default Value	Description
SourceHighway	ID	UNASSIGNED	Specifies which highway to extract audio from.

 Table 189: HighwayOut internal parameter

9.6 AudioIO > SpeakerOut

Summary: Retrieves audio from the Highways 3D sound field intended for a speaker at the specified X, Y, Z position.

Description: SpeakerOut creates a speaker in Highway 3D Service with the specified X, Y, and Z coordinates relative to the soundfield reference point, extracting the audio from the service for the speaker. The X, Y, and Z position should correspond to the speaker's physical location. Typically, SpeakerOut links directly to an AmpOut audio out.

For example, if an eight-channel amplifier drives an eight-speaker setup, the model should contain eight **SpeakerOuts** linked to eight **AmpOuts**.

Table 190, "SpeakerOut audio output" below lists and describes **SpeakerOut** audio output variable:

Name	Туре	Default Value	Description
AudioOut	audio	N/A	Audio for this speaker.

Table 190: SpeakerOut audio output

Table 191, "SpeakerOut control inputs" below lists and describes **SpeakerOut** control input variables:

Name	Туре	Default Value	Description
Gain	float32	1.0	A gain applied to the audio output.
Position	worldposition_ geocentric	(0.0, 0.0, 0.0)	The X, Y, and Z position of the speaker relative to the reference point. The coordinate system is the same as the one used in AuralCuePosn , where X is forward, +Y is left, and +Z is up.

Table 191: SpeakerOut control inputs

10.0 HRTFService

Description: The **HRTFService** provides 3D capability for headphone audio. Both environmental and communications audio can be mixed in 3D. Head-related transfer functions (HRTFs) position audio streams at specified 3D (i.e., azimuth and elevation) positions.

Figure 36, "HRTFService 3D communications configuration" on the next page depicts a 3D communications configuration for a single operator. The operator has two **CommPanels**: one for radios and the other for intercoms. Since both **CommPanel** components have the same HRTF bus selected (i.e., Op1), they contribute audio to the same four audio positions. Behind the scenes, **HRTFService** mixes audio from **CommPanels** with the same HRTF bus. Then **HRTFOut4** applies 3D filters according to the specified azimuth and elevation positions. **HRTFOut4's** left and right audio outputs connect to an ACENet channel to go to the operator's stereo headset. Each additional 3D operator may have a nearly identical configuration but must use a unique HRTF bus for independent audio and 3D positioning.

Table 192, "HRTFService internal parameter" below lists and describes the **HRTFService** internal parameter variables:

Name	Туре	Default Value	Description
Position	worldposition_geo- centric	(0,0,0)	The X, Y, and Z position of the speaker rel- ative to the reference point. The coordinate system is the same as the one used in Aur- alCuePosn (i.e., +X is forward, +Y is to the left, +Z is up).

Table 192: HRTFService internal parameter

Figure 36, "HRTFService 3D communications configuration" below shows a **HRTFService** 3D communications configuration:

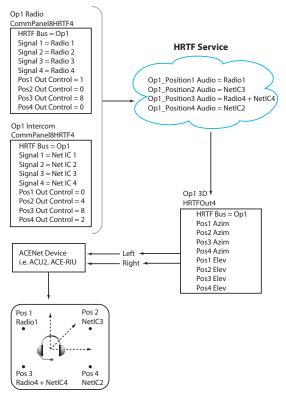


Figure 36: HRTFService 3D communications configuration

10.1 HRTFOut4

Summary: Outputs a 3D mix of audio for up to four sound positions.

Description: This component receives up to four audio streams from **HRTFService**, such as **CommPanel8HRTF4**. Each stream is positioned at a specific azimuth and elevation in 3D space relative to the listener. Valid azimuth values range is from -180 to 180 degrees. Valid elevation range is from -40 to 90 degrees. Head-related transfer function (HRTF) measurements are available in increments of a few degrees. The azimuth and elevation inputs jumps to the nearest position for which a filter is available. The resulting azimuth and elevation is then shown in **Result** for each variable.

An azimuth and elevation position of (0,0) corresponds to directly in front of the listener. Positive azimuths position sounds to the right and negative azimuths position sounds to the left. An azimuth of 90 corresponds to a position in line with the left ear. An elevation of 90 degrees means straight up. The HRTF uses time (i.e., delay) and intensity (i.e., gain) differences to synthesize how a sound or channel appears to come from a particular point in space. **HRTFOut4** *Left* and *Right* audio outputs must directly connect to the ACENet channel(s), since that is the final output stage before the digital-to-analog (D/A) conversion. For example, if the HRTF is using an ACU2, **HRTFOut4** should directly link to **ACU2channel** rather than going through a series of mixers or other components. This ensures that the HRTF timing and gains are maintained. Other audio sources (i.e., sidetone, etc.) can be mixed into **ACENet** as needed, given **ACENet** performs implicit mixing at the final output stage.

Table 193, "HRTFOut4 audio inputs" below lists and describes **HRTFOut4** audio input variables:

Name	Туре	Default Value	Description
OutLeft	audio	N/A	3D audio output for the left ear.
			<i>Caution</i> : OutLeft must be directly connected to <i>ACENet</i> (i.e., <i>ACU2</i> , <i>ACE-RIU</i> , etc.).
OutRight	audio	N/A	3D audio output for the right ear.
			<i>Caution</i> : OutRight must be directly con- nected to an ACENet component (e.g., ACU2, ACE-RIU.).

Table 193: HRTFOut4 audio inputs

Table 194, "HRTFOut4 control inputs" below lists and describes **HRTFOut4** control input variables:

Name	Туре	Default Value	Description
Enable	Boolean	TRUE	Turns 3D filtering on for all four audio pos- itions. If FALSE , the audio outputs are a mono mix of the four positions.
Pos1Azim–Pos4Azim	int32	0	Azimuth in degrees of audio position <i>N</i> (i.e., 1–4).
Pos1Elev– Pos4Elev	int32	0	Elevation in degrees of audio position <i>N</i> (i.e., 1-4).
Pos1Gain– Pos4Gain	float32	1.0	Gain applied to position <i>N</i> (i.e., 1-4) audio before mixing.
OutGain	float32	1.0	Gain applied to the left and right audio out- puts, affecting all positions.

Table 194: HRTFOut4 control inputs

Table 195, "HRTFOut4 status variable" below lists and describes the **HRTFOut4** status variable:

Name	Туре	Default Value	Description
Pos1Audio– Pos4Au- dio	audio	N/A	Displays each position's audio stream prior to 3D mixing.

 Table 195: HRTFOut4 status variable

Table 196, "HRTFOut4 internal parameter" below lists and describes the **HRTFOut4** internal parameter variable:

Name	Туре	Default Value	Description
HRTFBus	id	UNASSIGNED	Selects HRTFService bus of this component. Components sending audio to this component (e.g., CommPanel8HRTF4) must have a matching bus.

Table 196: HRTFOut4 internal parameter

10.2 CommPanel8HRTF4

Summary: Operates the same as the **CommPanel8** but outputs audio with the **HRTFService** for 3D positioned communications.

Description: CommPanel8HRTF4, much like a standard CommPanel, transmits and receives on multiple intercoms or radios. The component's *InSignal* and *SideSignal* behavior is identical to those of the generic CommPanel. However, instead of one *OutSignal* link, four output signals are generated and sent to the HRTFService for 3D mixing. The four signals correspond to four positions in 3D space.

This component should be paired with **HRTFOut4**, which receives the four output signals and does the 3D filtering. To establish this connection, the components must have matching *HRTFBus* variables. The four *PosNOutControl* masks determine which intercom buses contribute receive audio to each 3D position. Multiple **CommPanel8HRTF4s** can share the same *HRTFBus* to contribute audio to the same set of four positions.

Table 197, "CommPanel8HRTF4 audio input" below lists and describes the **Com-mPanel8HRTF4** audio input variable:

Name	Туре	Default Value	Description
InSignal	audio	N/A	Input audio that CommPanel transmits.

Table 197: CommPanel8HRTF4 audio input

Table 198, "CommPanel8HRTF4 audio output" below lists and describes the **Com-mPanel8HRTF4** audio output variable:

Name	Туре	Default Value	Description
SideSignal	audio	N/A	Sidetone audio generated by mixing all received sidetone signals from buses selected in the <i>SideControl</i> bit mask.

Table 198: CommPanel8HRTF4 audio output

Table 199, "CommPanel8HRTF4 internal parameters" below lists and describes **Com-mPanel8HRTF4** internal parameter variables:

Name	Туре	Default Value	Description
HRTFBus	id	UNASSIGNED	Selects HRTFService bus. HRTFOut4 with a matching bus receives this CommPanel's four position audio streams.
Sig1–Sig8	id	UNASSIGNED	Selects intercom bus handle.

Table 199: CommPanel8HRTF4 internal parameters

Table 200, "CommPanel8HRTF4 control inputs" on the next page lists and describes **Com-mPanel8HRTF4** control input variables:

Name	Туре	Default Value	Description
InControl	byte	255	Bit mask that selects intercom buses to transmit <i>InSignal</i> . For example, a value of 1 transmits on <i>Sig1</i> , a value of 2 on <i>Sig2</i> , 4 on <i>Sig3</i> , and 255 on all buses.
InGain	float32	1.0	Scales input audio.
Pos1OutControl– Pos4OutControl	byte	255	Bit mask that selects which buses contribute their output signal to position N (i.e., 1-4) output.
Power	Boolean	TRUE	Controls CommPanel's power. If FALSE , no audio is received or transmitted.
PTT	Boolean	FALSE	Controls CommPanel audio transmission.
SideControl	byte	255	Bit mask that selects intercom buses that con- tributes to <i>SideSignal</i> . For example, a value of 1 receives from <i>Sig1</i> , a value of 2 from <i>Sig2</i> , 4 from <i>Sig3</i> , and 255 from all buses.

Name	Туре	Default Value	Description
SideToneGain	float32	1.0	Scales sidetone mix just before <i>SideSignal</i> out- put.
SideGainControl	byte	255	Selects which side tones are affected by receive signal gains. When a bit is high, the intercom bus's sidetone volume is multiplied by the appropriate <i>SigN_RxGain</i> . <i>SideControl</i> value for intercom bus becomes logical and of <i>SideControl</i> and <i>OutControl</i> .
SidetoneLocal	byte	255	Selects which side tones are generated locally versus remotely. If more than one CommPanel is sharing the same intercom bus, this variable determines if CommPanel shares the sidetone with other panels.
Sig1_RxGain– Sig8_RxGain	float32	1.0	Receive volume for each intercom bus.

Table 200: CommPanel8HRTF4 control inputs

11.0 IOInterfaces

The following section details the **IOInterfaces** components and the objects within them. The **IOInterfaces** components include:

- ACE_RIU_channel
- ACE_RIU_SerialByteOut
- ACUchannel
- ACU2channel
- ACU2_SerialByteOut

- AmpOut
- RTPStream
- SerialPort_IO
- VoisusChannel

11.1 ACE_RIU_channel

Summary: The ACE-RIU device provides remote digital-to-analog audio and I/O distribution between Telestra servers and audio peripherals. The ACE_RIU_channel component assigns audio inputs and outputs for models.

Description: The ACE_RIU_channel component connects the software model audio to one specified channel on the ACE-RIU device. It also handles the digital in and out from the device channel. Up to 32 audio streams can be mixed together and linked to the ACE-RIU channel output. The component accepts a single audio in source. The audio gain is adjusted through the audio in and out gains. The overall channel volume is adjusted through the volume input.

Two serial devices can be connected to one ACE-RIU device. The serial devices are associated with ACE-RIU channels A and C. When connecting to a state machine device such as an handheld terminal (HHT) or SINCGARS panel, only use channels A and C.

Table 201, "ACE_RIU_channel audio input" below lists and describes the ACE_RIU_channel audio input variable:

Name	Туре	Default Value	Description
AudioOuts	audio[32]	N/A	Mixes up to 32 audio streams before it is routed out of the ACE-RIU device as an analog signal.

Table 201: ACE_RIU_channel audio input

Table 202, "ACE_RIU_channel audio output" below lists and describes the ACE_RIU_channel audio output variable:

Name	Туре	Default Value	Description
AudioIn	audio	N/A	Audio routed in from the ACE-RIU device and sent to other components in the model.

Table 202: ACE_RIU_channel audio output

Table 203, "ACE_RIU_channel control input" below lists and describes the ACE_RIU_channel control input variable:

Name	Туре	Default Value	Description
DigitalIn	uint8	0	Allows the ACE_RIU_channel to drive a digital input to the software. Each channel has one digital input.

Table 203: ACE_RIU_channel control input

Table 204, "ACE_RIU_channel control outputs" below lists and describes ACE_RIU_channel control output variables:

Name	Туре	Default Value	Description
AudioOutGain	float32	1.0	Provides the audio output's gain control.
AudioInGain	float32	1.0	Provides the audio input's gain control.
DigitalOut	Boolean	FALSE	Allows the software to drive a digital output on the ACE-RIU. Each ACE-RIU channel has one digital output.
Volume	float32	1.0	Sets the ACE-RIU channel's main volume.

Table 204: ACE_RIU_channel control outputs

Table 205, "ACE_RIU_channel internal parameters" on the facing page lists and describes ACE_RIU_channel internal parameter variables:

Name	Туре	Default Value	Description
Channel	riu_channel	None	Selects the ACE-RIU channel.
Identifier	device_id	<select></select>	Selects the name of the ACE-RIU device.

Туре	Default Value	Description
		Defines variables related to a state machine device associated with the specified ACE-RIU channel such as an HHT or SINCGARS panel. State machine devices can only connect to channels A and C.
		<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.
string	<edit></edit>	Identifies state machine instance in the ini- tialization (i.e., .ini) file.
		<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.
string	<edit></edit>	Identifies the state machine .ini file.
		<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.
sme_type	NONE	Type of state machine device.
		<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.
	string	Value string string <edit></edit>

 Table 205: ACE_RIU_channel internal parameters

11.2 ACE_RIU_SerialByteOut

Summary: This component transmits up to eight bytes of data from an ACE-RIU ACENet device using the serial port interface.

Description: This device transmits a range of bytes (i.e., 0–8) from the ACENet device's serial port interface. The bytes transmit when *MsgSize* updates and is not 0. The bytes also transmit when the *Char* numbers update and the updated *Char* number is in the range of bytes transmitted, as specified by *MsgSize*.

Table 206, "ACE_RIU_SerialByteOut control inputs" below lists and describes ACE_RIU_SerialByteOut control input variables:

Name	Туре	Default Value	Description
MsgSize	uint32	0	Specifies the number of bytes that the <i>CharsOut</i> array transmits. The range for this variable is [0,8]. When this control changes, the corresponding number of bytes transmit in order.
			 Modifier. add (+) Modifier_default: 0
CharsOut	uint8	0	An array of eight bytes (uint8). The resulting bytes in this array transmit in order from <i>Char0</i> to the number specified in <i>MsgSize</i> . If <i>MsgSize</i> is 0, no bytes are transmitted. If <i>MsgSize</i> is not 0 and a byte updates in the range [<i>Char1</i> , <i>Char{MsgSize}</i>], the whole range transmits.
			 Modifier: add (+) Modifier_default: 0

Table 206: ACE_RIU_SerialByteOut control inputs

Table 207, "ACE_RIU_SerialByteOut internal parameters" below lists and describes ACE_ RIU_SerialByteOut internal parameter variables:

Name	Туре	Default Value	Description
Identifier	device_id	<select></select>	The name of the ACE-RIU.
Channel	riu_channel	A	Select the ACUchannel to transmit serial data. Serial Port A requires channel A; Serial Port B requires channel C.
BaudRate	serial_baud_ rate	Baudrate_ 4800	Select the serial data's baud rate.

Table 207: ACE_RIU_SerialByteOut internal parameters

11.3 ACUchannel

Summary: The software-configurable component for the ACU hardware device.

Description: The **ACUchannel** connects the software model audio to a channel of the physical ACU device. The control outputs provide the press-to-talk (PTT) channel selection for Channels 0–3. Adjust audio gain with the *AudioOuts* and *AudioIn* gains. The volume controls the overall channel's volume.

Table 208, "ACUchannel audio input" below lists and describes the **ACUchannel** audio input variable:

Name	Туре	Default Value	Description
AudioOuts	audio[32]	N/A	Mixes up to 32 audio streams before routing out of the ACU device as an analog signal.

Table 208: ACUchannel audio input

Table 209, "ACUchannel audio output" below lists and describes the **ACUchannel** audio output variable:

Name	Туре	Default Value	Description
AudioIn	audio	N/A	Audio routed in from the ACU device on the specified channel that becomes available to other components in the model.

Table 209: ACUchannel audio output

Table 210, "ACUchannel control inputs" below lists and describes **ACUchannel** control input variables:

Name	Туре	Default Value	Description
AudioInGain	float32	1.0	Provides AudioIn's gain control.
AudioOutGain	float32	1.0	Provides AudioOut's gain control.
DigitalOut	Boolean	FALSE	The ACU digital output allows the software to drive a digital output for ACUchannel . One digital output exists per channel.
Volume	float32	1.0	Sets the ACUchannel's main volume.

Table 210: ACUchannel control inputs

Table 211, "ACUchannel control outputs" on the next page lists and describes **ACUchannel** control output variables:

Name	Туре	Default Value	Description
PTT	Boolean	FALSE	When TRUE , <i>PTT</i> is on for transmission.
PTTselect	uint8	255	Digital in for <i>PTT</i> . Ranges 1–255.
PTT1	Boolean	FALSE	When TRUE , the <i>PTT</i> is on for transmission.
PTT1select	uint8	255	Digital in for the PTT. Ranges 1–255
PTT2	Boolean	FALSE	When TRUE , the <i>PTT</i> is on for transmission.
PTT2select	uint8	255	Digital in for the <i>PTT</i> . Ranges 1–255
PTT3	Boolean	FALSE	When TRUE , the <i>PTT</i> is on for transmission.
PTT3select	uint8	255	Digital in for the PTT. Ranges 1–255
DigitalIn1	uint8	0	Allows the ACU to drive a digital input to the soft- ware and allows direct connection of <i>PTT</i> . Each ACU has three digital inputs per channel.
DigitalIn2	uint8	0	Allows the ACU to drive a digital input to the soft-
DigitalIn3	uint8	0	ware and allows direct connection of <i>PTT</i> . Each ACU has three digital inputs per channel.

Table 211: ACUchannel control outputs

Table 212, "ACUchannel internal parameters" below lists and describes **ACUchannel** internal parameter variables:

Name	Туре	Default Value	Description
Channel	acenet_chan- nel	None	Selects the ACUchannel.
Identifier	device_id	<select></select>	Selects the name of the ACU device.
StateMachine	N/A	N/A	Defines variables related to a state machine device associated with the specified ACUchannel , such as a handheld terminal (HHT) or SINCGARS panel. State machine devices can only connect to channels A and C.
			<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.
Name	string	<edit></edit>	Identifies state machine instance in the ini- tialization (.ini) file.
			<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.
EntityName	string	<edit></edit>	Identifies state machine .ini file.
			<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.
Туре	string	None	Type of state machine device.
			<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.

Table 212: ACUchannel internal parameters

11.4 ACU2channel

Summary: The software-configurable component for the ACU2 hardware device.

Description: The ACU2channel connects the software model audio to a channel of the physical ACU2 device. The control outputs provide the press-to-talk (PTT) channel selection for channels 0–3. Adjust audio gain with the *AudioOut* and *AudioIn* gains. The volume controls the overall channel's volume. The ACU2 has four stereo audio outputs and four mono audio inputs that support multiple mono or stereo operators and audio equipment.

Table 213, "ACU2channel audio inputs" below lists and describes ACU2channel audio input variables:

Name	Туре	Default Value	Description
AudioOuts	audio[32]	N/A	Mono audio output of the ACU2channel . Mixes up to 32 audio streams.
AudioOutsLeft	audio[32]	N/A	Audio that routes out the left stereo channel. This audio is mixes with the <i>AudioOut</i> audio streams. Mixes up to 32 audio streams.
AudioOutsRight	audio[32]	N/A	Audio that is routed out the right stereo channel. This audio also mixes with the <i>AudioOut</i> audio streams. Mixes up to 32 audio streams.

Table 214, "ACU2channel audio output" below lists and describes the **ACU2channel** audio output variable:

Name	Туре	Default Value	Description
AudioIn	audio	N/A	Audio routed in from the ACU2 device on the specified channel that becomes available to other components in the model.

Table 214: ACU2channel audio output

Table 215, "ACU2channel control inputs" below lists and describes ACU2channel control input variables:

Name	Туре	Default Value	Description
AudioOutGain	float32	1.0	The AudioOutGain gain control.
AudioOutGainL	float32	1.0	The gain control for the <i>AudioOutsLeft</i> audio out- put.
AudioOutGainR	float32	1.0	The gain control for the <i>AudioOutsRight</i> audio output.
AudioInGain	float32	1.0	The AudioIn gain control.
DigitalOut	Boolean	FALSE	The ACU2 digital output allows the software to drive a digital output for the ACU2channel . There is one digital output per channel.
Volume	float32	1.0	Sets the main volume of the ACU2 outputs.

Table 215: ACU2cl	nannel control	inputs
-------------------	----------------	--------

Table 216, "ACU2channel control outputs" below lists and describes ACU2channel control output variables:

Name	Туре	Default Value	Description
AnalogIn1	uint8	0	Corresponds to <i>DigitalIn1</i> with a range of 1–255. Digital in for <i>PTT</i> . Used for four-channel selector <i>PTT</i> .
AnalogIn2	uint8	0	Corresponds to <i>DigitalIn2</i> with a range of 1–255. Used for four-channel selector <i>PTT</i> .
AnalogIn3	uint8	0	Corresponds to <i>DigitalIn3</i> with a range of 1–255. Digital in for the <i>PTT</i> . Used for four-channel selector <i>PTT</i> .
DigitalIn1–Digit- alIn3	Boolean	FALSE	Allows the ACU2 to drive a digital input to the software and allows direct connection of <i>PTT</i> . Each ACU2 has three digital inputs per channel.
PTT	Boolean	FALSE	When TRUE , <i>PTT</i> is on for transmission.
PTTselect	uint8	255	Digital in for <i>PTT</i> ; matches the CommPanel <i>InControl/OutControl</i> variables. Valid values are 0, 1, 2, 4, and 8.

Table 216: ACU2channel control outputs

Table 217, "ACU2channel internal parameters" on the next page lists and describes **ACU2channel** internal parameter variables:

Name	Туре	Default Value	Description
Channel	acu2_channel	None	Select the ACU2 channel A–D.
Identifier	device_id	<select></select>	Select the name of the ACU2 device.
StateMachine	N/A	N/A	Defines variables related to a state machine device associated with the specified ACU2chan- nel , such as an HHT or SINCGARS panel. State machine devices can only connect to channels A and C. <i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.

Name	Туре	Default Value	Description
Name	string	<edit></edit>	Identifies state machine instance in the ini- tialization (.ini) file.
			<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.
EntityName	string	<edit></edit>	Identifies state machine initialization file.
			<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.
Туре	Туре	NONE	Type of state machine device.
			<i>Important:</i> This variable is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.

Table 217: ACU2channel internal parameters

11.5 ACU2_SerialByteOut

Summary: This component transmits up to eight bytes of data from an ACU2 ACENet device using the serial port interface.

Description: This device transmits a range of bytes (i.e., 0–8) from the ACENet device's serial port interface. The bytes transmit whenever *MsgSize* updates and is not 0. The bytes also transmit whenever *Char* numbers are updated and as long as the updated *Char* number is in the range of bytes transmitted, as specified by *MsgSize*.

Table 218, "ACU2_SerialByteOut control inputs" below lists and describes ACU2_SerialByteOut control input variables:

Name	Туре	Default Value	Description
MsgSize	uint32	0	Specifies the number of bytes that transmit from <i>CharsOut</i> . The range for this variable is [0,8]. When this variable changes, the corresponding number of bytes transmit in order.
			 Modifier. add (+) Modifier_default: 0
CharsOut uint8	0	An array of eight bytes (i.e., uint8). The resulting bytes in this array transmit in order from <i>Char1</i> to the number specified in <i>MsgSize</i> . If <i>MsgSize</i> is 0, no bytes transmit. If <i>MsgSize</i> is not 0 and a byte is updated in the range [<i>Char1</i> , <i>Char<msgsize></msgsize></i>], the whole range transmits.	
			 Modifier. add (+) Modifier_default. 0

Table 218: ACU2_SerialByteOut control inputs

Table 219, "ACU2_SerialByteOut internal parameters" below lists and describes ACU2_SerialByteOut internal parameter variables:

Name	Туре	Default Value	Description
Identifier	device_id	<select></select>	The name of the ACU2 goes here.
Channel	acu2_chan- nel	A	Choose an ACU2 channel to transmit serial data. Serial Port A requires Channel A, while Serial Port B requires Channel C.
BaudRate	serial_baud_ rate	baudrate_ 4800	Choose the baud rate of the serial data.
SerialSigType	serial_sig- nal_type	RS422	Choose the serial signal type.

Table 219: ACU2_SerialByteOut internal parameters

11.6 AmpOut

Summary: The software-configurable component for the amplifier hardware devices.

Description: **AmpOut** drives up to 32 audio streams from within the model to a specified channel of the amplifier.

Table 220, "AmpOut audio input" below lists and describes the **AmpOut** audio input variable:

Name	Туре	Default Value	Description
AudioOuts	audio[32]	N/A	Mixes up to 32 audio streams before routing out of the amplifier channel.

Table 220: AmpOut audio input

Table 221, "AmpOut control inputs" below lists and describes **AmpOut** control input variables:

Name	Туре	Default Value	Description
AudioOutGain	float32	1.0	Provides the audio output's overall gain control.
LimiterEnable	Boolean	TRUE	Turns LIMITER on or off. If TRUE , AmpOut's peak output levels do not exceed <i>Lim-iterThreshold</i> .
LimiterRelease	float32	100.0	The rate in dB/sec that determines how fast LIMITER responds to a signal-level drop. Higher releases cause a faster gain increase, ensuring quiet signals do not get quieter.
LimiterThreshold	float32	0.0	The maximum peak level in dB allowed in the out- put signal. A value of -12 corresponds to 0.25 lin- ear or 1/4 a full-scale signal.
Volume	float32	1.0	Sets the amplifier's normal volume.

Table 221: AmpOut control inputs

Table 222, "AmpOut internal parameters" below lists and describes **AmpOut** internal parameter variables:

Name	Туре	Default Value	Description
Channel	acenet_chan- nel	None	Selects the amplifier channel.
Identifier	device_id	<select></select>	Select the amplifier's name.

11.7 RTPStream

Summary: The **RTPStream** component sends and receives audio over the network using Real-time Transport Protocol (RTP).

Important: Per Section 4 of the RTP standard <u>RFC 3550</u>, Telestra encodes RTP streams in network byte order (i.e., big endian). Telestra extends this standard to both integer fields and floating-point payload data, including Float_48k. Please ensure that any network devices exchanging RTP packets with Telestra use the same endianness to avoid garbled audio.

Description: To set up an RTPStream, complete the following steps:

- 1. Define RTP streams in an **RTP Stream Map** (.rtp) file, as described in Section 11.7.1, "Add an RTP Stream Map" on page 189.
- 2. Link the new **RTP Stream Map** to a Telestra server, as described in Section 11.7.2, "Assign the RTP Stream Map to a Telestra server" on page 191.
- 3. Configure **RTPStream** variables using the variable descriptions below.

Table 223, "RTPStream audio inputs and outputs" below lists and describes **RTPStream** audio inputs and outputs:

Name	Туре	Default Value	Description	
Audio Input				
TxAudio	audio	N/A	The RTPStream's audio source.	
Audio Output				
RxAudio	audio	N/A	The received network RTP audio.	

Table 223: RTPStream audio inputs and outputs

Table 224, "RTPStream control inputs" below lists and describes RTPStream control inputs:

Name	Туре	Default Value	Description
NameIn	string	N/A	Determines which stream configuration to use in the RTP Stream Map . This input overrides the <i>Name</i> internal parameter variable.
TxEnabled	boolean	FALSE	When TRUE , RTPStream streams audio. If the input audio signal is inactive or no signal is connected, RTPStream sends packets of silent audio. When FALSE , RTPStream does not stream audio.

Table 225, "RTPStream internal parameters" below lists and describes **RTPStream** internal parameters:

Name	Туре	Default Value	Description
Name	string	N/A	Determines which stream configuration to use in the RTP Stream Map .
PacketLength	packet_ length	_20_ms	Sets the audio length to send per packet.
PayloadFormat	payload_ format	Mu_Law_8k	Sets the payload's audio-encoding format.

Table 225: RTPStream internal parameters

In RTP, the payload type is a 7-bit number that represents the type of encoding that the stream uses. Table 226, "RTPStream payload formats" below lists and describes **RTPStream** payload formats:

Payload Format	Туре	Byte Order	Description
Mu_Law_8k	0	N/A	8-bit, 8 kHz μ-law algorithm
A_Law_8k	8	N/A	8-bit, 8 kHz A-law algorithm
A_Law_16k	92	N/A	8-bit, 16 kHz A-law algorithm
PCM_16_16k	93	network/big endian	16-bit, 16 kHz PCM
Float_48k	94	network/big endian	32-bit, 48 kHz floating point
PCM_16_48k	95	network/big endian	16-bit, 48 kHz PCM

Table 226: RTPStream payload formats

Table 227, "RTPStream packet lengths" below describes the length of the audio sample **RTPStream** sends in a single packet:

Packet Length	Description			
_4_ms	The packet contains 4 ms of audio.			
_8_ms	The packet contains 8 ms of audio.			
_12_ms	The packet contains 12 ms of audio.			
_16_ms	The packet contains 16 ms of audio.			
_20_ms	The packet contains 20 ms of audio.			
_25_ms	The packet contains 25 ms of audio.			

Table 227: RTPStream	packet lengths
----------------------	----------------

11.7.1 Add an RTP Stream Map

An **RTP Stream Map** is a configuration file that defines RTP streams and their corresponding parameters (i.e., the destination IP address, local port numbers, and remote port numbers). To add an **RTP Stream Map** file and define RTP streams, follow these steps:

1. From the left menu, go to servers.

	ACE STUDIO	Project Manager	-	×
Project Layout Tools Admin	Help			
🕒 X 😫 🐉 🗕 C				
Test_RTP_Stream:hla-e-t1 💌	Icon View			
	servers			
🔤 <u>main</u>				1
Channels				
i commplans				
mathplans				
iiii <u>filterplans</u>				
Image:				
Sound_repositories				
Image:				
▶ 🔄 <u>hosts</u>				
Ioads				
models				
i servers				
isstplans				
iii <u>hitplans</u>				
in srplans				
Cellplans				

Figure 37: servers navigation

- 2. Right-click the servers canvas, and select Add.
- 3. Select the **New Item** drop-down list, choose **RTP Stream Map**, and enter a unique name.
- 4. Select ок

5. Under servers, select the new .rtp file, and then select *Content file*

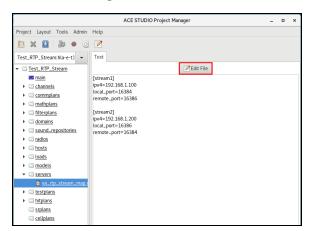


Figure 38: Edit RTP Stream Map .rtp file

- 6. In the text editor, enter the following parameters for each stream:
 - *[StreamName]*: where *StreamName* is the name of the stream defined in brackets (e.g., [stream1], [stream2]). **RTPStream** uses this name to choose a configuration. Stream names must follow initialization (.ini) file format.
 - *ipv4*: in **IP** Address, enter *xxx.xxx.xxx*, where *xxx.xxx.xxx* is the IPv4 address or hostname of a remote RTP endpoint. In a typical configuration, this RTP endpoint serves as the destination for outgoing streams and the source for incoming streams.
 - *local_port*: the port that **RTPStream** uses to listen for incoming streams.
 - *remote_port*: the port that the remote RTP endpoint uses to listen for incoming streams and send outgoing streams.

An **RTP Stream Map** .rtp file might resemble the following:

```
[stream1]
ipv4=192.168.1.100
local_port=16384
remote_port=16386
[stream2]
ipv4=192.168.1.200
local_port=16386
remote_port=16384
```

7. Select Save

11.7.2 Assign the RTP Stream Map to a Telestra server

To assign the **RTP Stream Map** to a Telestra server, follow these steps:

1. From the left menu, choose a layout (e.g., **main**).

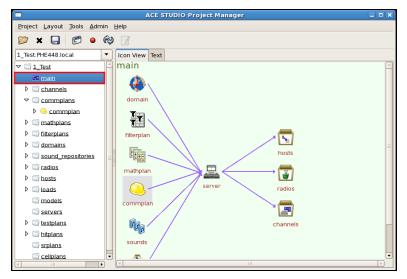


Figure 39: Layout navigation

- 2. In Icon View, right-click a Telestra server (), and choose Edit.
- 3. In Telestra Editor, go to SIM SERVER.
- 4. Select **RTP Plan**, and choose the **RTP Stream Map** you created in Section 11.7.1, "Add an RTP Stream Map" on page 189.

Telestra Editor					
Configure (* required	fields)				
Name: * Hla-e-t1					
Target: hla-e-t1					
CORE SIM SERVER	SM	TESTING	OTHER		
Select					
ASTINet Gateway:	Select			•	
DIS Gateway:	Select			•	
DIS Forward:	Select			•	
Speech Recog:	Select 💌			•	
Cell Interface:	Select		•		
TTS Plan:	Select		•		
RTP Plan:	RTP_	Stream_Ma	p2	•	

Figure 40: Assign the RTP Stream Map to RTP Plan

- 5. Select Update
- 6. From the toolbar, select **Project** > **Save**.

7. From the toolbar, select **Install Layout** ().

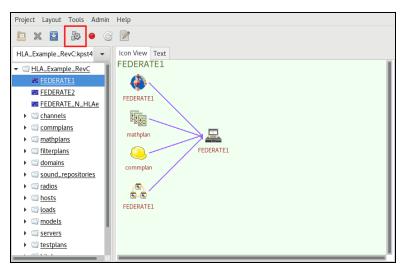


Figure 41: Install Layout

11.8 SerialPort

Summary: This component is an internal ASTi component that debugs ACE-RIU channels.

11.9 VoisusChannel

Summary: **VoisusChannel** provides the audio communication and radio control for a remote client.

Description: VoisusChannel works with CommPanels and multiple radio components to provide remote radio control. Use VoisusChannel to provide press-to-talk (PTT), output, radio net selection, and volume controls for the remote client. This component accepts receive and transmit states and commplan configuration for the remote client radios. Several settings per radio (i.e., 1–16) define how the remote operator controls the radio.

Table 228, "VoisusChannel audio inputs" below lists and describes VoisusChannel audio input variables:

Name	Туре	Default Value	Description
AudioOut	audio	N/A	Audio sent to the remote client.
Sidetone	audio	N/A	Audio sent to the remote client as the sidetone signal.

Table 228: VoisusChannel audio inputs

Table 229, "VoisusChannel audio output" below lists and describes the **VoisusChannel** audio output variable:

Name	Туре	Default Value	Description
AudioIn	audio	N/A	Audio routed from the remote client on the specified channel.

Table 229: VoisusChannel audio output

Table 230, "VoisusChannel control inputs" below lists and describes **VoisusChannel** control input variables:

Name	Туре	Default Value	Description
Fill	string	N/A	Identifies the Comm Plan fill from the connected radio (e.g., one input per radio, Radio 1–16).
NetIn	uint32	0	The current net selection of the specified radio (e.g., one input per radio, Radio 1–16).
Receiving	Boolean	FALSE	When TRUE , the specified radio actively receives (e.g., one input per radio, Radio 1–16).
Transmitting	Boolean	FALSE	When TRUE , the specified radio actively transmits (e.g., one input per radio, Radio 1–16).

Table 230: VoisusChannel control inputs

Table 231, "VoisusChannel control outputs" below lists and describes **VoisusChannel** control output variables:

Name	Туре	Default Value	Description
PTT	Boolean	FALSE	When TRUE , audio actively transmits.
InControlA	uint8	0	Selects the radios (i.e., 1–8) in the CommPanel to transmit on (i.e., bit mask).
InControlB	uint8	0	Selects the radios (i.e., 9–16) in the CommPanel to transmit on (bit mask).
NetOut	int32	0	Net selection from the remote client (e.g., one output per radio, Radio 1–16).
OutControlA	uint8	0	Selects the radios (i.e., 1–8) to receive from the bit mask.
OutControlB	uint8	0	Selects the radios (9–16) to receive from the bit mask.
Volume	float32	0.0	Sets the radio receive gain (e.g., one output per radio, Radio 1–16).

Table 231: VoisusChannel control outputs

Table 232, "VoisusChannel internal parameters" below lists and describes **VoisusChannel** internal parameter variables:

Name	Туре	Default Value	Description
DefaultNet	uint8	0	The initial net that the radio tunes to after an install- ation (e.g., one parameter per radio, radios 1–16).
DefaultRxState	uint8	0	The initial receive/transmit settings after an install (e.g., one parameter per radio, radios 1–16).
DeviceName	string	<edit></edit>	The name given to the operator instance in the model.
NetLock	Boolean	FALSE	Controls whether the remote client can change the default net selection (e.g., one parameter per radio, Radio 1–16)
NumRadios	uint8	0	Number of attached radios that the remote client controls.
RxLock	Boolean	FALSE	Controls whether the remote client can change the default receive state (e.g., one parameter per radio, Radio 1–16).

Table 232: VoisusChannel internal parameters

12.0 Intercom

The **Intercom** components provide an audio bus service to which other components can connect, distributing audio throughout a model. Additionally, the intercom service and components can simulate the intercom bus structures of real aircraft and other training applications. This section provides details on the following intercom components:

- IcomRx
- IcomTx
- Intercom_Bus_Power

This section also describes the IntercomBusService.

12.1 IcomBalancer8

Summary: Aural cue applications with multiple speakers that distribute the same sound can use **IcomBalancer8** to individually set each speaker's volume.

Description: IcomBalancer8 places a single audio signal on multiple intercom channels. To adjust the aural cue's apparent location relative to its speaker position, set the individual gain of each intercom bus. Each component can route an audio signal to eight or fewer intercom buses.

Note: To route audio from the intercom buses to the speakers, use the *IcomRx* component. To learn more about *IcomRx*, go to Section 12.2, "IcomRx" on the next page.

Table 233, "IcomBalancer8 audio input" below lists and describes the **IcomBalancer8** audio input:

Name	Туре	Default Value	Description
InSignals	audio	N/A	An input mixer with 32 inputs; connects to one or more audio signal(s) that you will distribute to the spe- cified intercom buses.

Table 233: IcomBalancer8 audio input

Table 234, "IcomBalancer8 control inputs" below lists and describes **IcomBalancer8** control inputs:

Name	Туре	Default Value	Description
InGain	basic/float32	N/A	A gain applied to the sum of the <i>InSignals</i> .
Gain1–Gain8	basic/float32	0	Multipliers to the assigned <i>OutBus</i> audio bus signals. IcomBalancer8 multiplies each audio buses signal amplitude by its corresponding gain value before transmitting it to the audio bus.

Table 234: IcomBalancer8 control inputs

Table 235, "IcomBalancer8 internal parameters" below lists and describes **IcomBalancer8** internal parameter variables:

Name	Туре	Default Value	Description
InSignalResult	audio	N/A	The audio signal that IcomBalancer8 will distribute to the specified intercom buses; displays the InSignals result with InGain applied.
OutBus1– OutBus8	id	N/A	Selects the intercom bus handle.

Table 235: IcomBalancer8 internal parameters

12.2 IcomRx

Summary: Intercom Receiver (IcomRx) provides a connection from an intercom bus within the model. The purpose of this component is to provide a simplified means of retrieving audio from an intercom bus without using a **CommPanel**. This capability is useful for monitoring audio on a particular intercom bus within the model. **IcomRx** cannot transmit audio to an intercom bus.

This component also provides the bus with a power state. If there is not an intercom object included for a particular bus, then the bus is fully operational by default.

Description: **IcomRx** provides power conditions a specific bus and a direct output tap of the bus composite audio.

This component maps to the same connection required for a radio object. These two serviceside connections have values of **1.0** when the intercom object power is **TRUE** and **0.0** when the power is **FALSE**. Basically, the intercom bus is off if the power is off.

The intercom bus parameter defines which bus the audio is pulled from. This parameter maps to the handle of the intercom bus.

The **IcomRx** output is the audio that comes from the intercom bus. *OutGain* controls the amplitude of the output signal. If this variable is 0.0, **IcomRx** does not output a signal.

Table 236, "IcomRx audio output" below lists and describes the **IcomRx** audio output variable:

Name	Туре	Default Value	Description
OutSignal	audio	N/A	Outputs audio from the selected intercom bus.

Table 236: IcomRx audio output

Table 237, "IcomRx control input" below lists and describes the **IcomRx** control input variable:

Name	Туре	Default Value	Description
OutGain	float32	1.0	 <i>OutGain</i> applies gain control to the signal that is retrieved from the intercom bus. <i>Modifier</i>. multiply (*) <i>Modifier_default</i>: 1.0

Table 237: IcomRx control input

Table 238, "IcomRx internal parameter" below lists and describes IcomRx inputs, outputs, and internal parameters:

Name	Туре	Default Value	Description
Channel	id	UNASSIGNED	Channel selects the intercom bus identifier.

Table 238: IcomRx internal parameter

12.3 IcomTx

Summary: Intercom Transmitter (IcomTx) connects to an intercom bus within the model. This component provides a simple means of placing audio on an intercom bus without a **Com-mPanel**. This capability is useful for distributing audio from a single source that should be heard through multiple comm panels in the model. The source audio for transmission comes from an external signal connection into **IcomTx**. This component cannot retrieve audio from an intercom bus.

Description: IcomTx provides power conditioning of a specific bus and an input for an auxiliary signal to be placed onto the bus. Only one intercom object may connect to any individual intercom bus within the intercom service. Any other configuration is invalid. IcomTx maps exactly to the same connections required for a radio transmitter object. The parameter intercom bus determines onto which bus the audio is injected. This parameter maps to the handle input to the intercom service. Since IcomTx cannot retrieve audio from a bus, no output signal is required.

Table 239, "IcomTx audio input" below lists and describes the IcomTx audio input variable:

Name	Туре	Default Value	Description
InSignal	audio	N/A	Connects a signal into the selected intercom bus for transmission.

Table 239: IcomTx audio input

Table 240, "IcomTx control input" below describes the **IcomTx** control input:

Name	Туре	Default Value	Description
InGain	float32	1.0	Applies gain control to <i>InSignal</i> before it transmits on the intercom bus.

Table 240: IcomTx control input

Table 241, "IcomTx internal parameter" below describes the **IcomTx** internal parameter:

Name	Туре	Default Value	Description
Channel	id	UNASSIGNED	Channel selects the intercom bus identifier.

Table 241: IcomTx internal parameter

12.4 Intercom_Bus_Power

Summary: Provides power for IcomRx and IcomTx to play audio over an intercom bus.

Description: Intercom_Bus_Power selects an intercom bus to control power. *Power* toggles Intercom_Bus_Power. *IntercomBus* is turned on by default.

Table 242, "Intercom_Bus_Power audio input" below describes the Intercom_Bus_Power audio input variable:

Name	Туре	Default Value	Description
Power	Boolean	FALSE	 Toggles the intercom bus power. <i>Modifier</i>. XOR <i>Modifier_default</i>: TRUE

Table 242: Intercom_Bus_Power audio input

Table 243, "Intercom_Bus_Power internal parameter" below describes **Intercom_Bus_Power** internal parameter:

Name	Туре	Default Value	Description
IntercomBus	id	UNASSIGNED	Selects the intercom bus to toggle power.

 Table 243: Intercom_Bus_Power internal parameter

12.5 IntercomBusService

Summary: IntercomBusService provides an invisible audio connection between objects that are attached to a common intercom channel. All connectivity between a specific operator's CommPanel and the source and source/sink objects is carried out via intercom service links. The service supports multiple simultaneous channels that operate in isolation from any others. Inputs to a particular channel mix. Outputs from a channel are common to all destination objects, with one exception related to the operation of sidetone. Sidetone is the return signal from an object that has transmit and receive capabilities, such as a radio. Go to the description below for a full definition of the sidetone characteristic. Both half and full duplex connectivity between objects is supported depending on the source/sink object type.

Note: As with all service-type components, you do not manually create the service object; the loader automatically creates the service object when it detects that a component has an intercom service port connection. Only one service component of the appropriate type loads based on the first found need for a service of this type.

Description: IntercomBusService provides an *N* channelized audio mixer and distribution service. IntercomBusService provides a centralized point for the generation of sidetone signal return to source objects. The majority of voice systems receive a portion of the source signal as a return, ensuring that the system is functional. The sidetone must generate cleanly since there are many potential issues related to multiple signal returns to an operator. When you should hear sidetone, the receive signal should not contain the same source. A return path must provide a local loop for the sidetone to ensure that the source signal subtracts from the receive signal. This action must also accommodate any processing delays within the signal paths.

This service also includes some intelligence, allowing it to condition the return of sidetone based on state data returned from a connected object, specifically when used to link an operator to a radio or network intercom object. The radio object must provide a sidetone state return that conditions whether any sidetone returns to any operators on the channel.

IntercomBusService touches many other components throughout a model. As a result, define the nature of the service-edge primitive. These primitives provide the component interface to and from the **IntercomBusService**. This interface passes the input audio to the service, receives the return audio from the service, and passes additional data into the service. The service includes the channel index set by the model developer **Channel Handle**, sidetone gain, audio activity status, and component type. The component type determines whether the sidetone gain acts as a local loop gain or gate value for local radios or the net intercom. The Channel Handle is the only user-defined input to this primitive. No other inputs or settings are required.

Within the tool, a handle (i.e., bus name) is defined, and the tool assigns an internal index number to the channel. By default, the tool assigns the channel numbers incrementally. Internally, **IntercomBusService** uses the channel number to link inputs and outputs. Channel numbers do not display. All displays related to the handles must be in alphabetic order to help you find required handles for assignment.

Intercom also supports diagnostic facilities, allowing you to view intercom channels in the model. This function scans the model for all objects using the service and extracts the information into a table-like view.

Component Name	Var	Bus
/Intercom_Intercom_Bus_ Power	IntercomBus	bus_number1
/Intercom_IcomRx1	Channel	bus_number1
/Intercom_IcomRx1	lcBus.channel_ld	bus_number1
/Intercom_IcomTx1	Channel	bus_number1
/Intercom_IcomTx1	IcBus.channel_Id	bus_number1
/Intercom_IcomRx2	Channel	bus_number2
/Intercom_IcomRx2	lcBus.channel_ld	bus_number2
/Intercom_IcomTx2	Channel	bus_number2
/Intercom_IcomTx2	lcBus.channel_ld	bus_number2

The Assigned Buses view displays all components connected to each handle:

Table 244: Components connected to Assigned Buses

13.0 Platform

The following section details **Platform** and the objects within them. **Platform** components include the following:

- Detonation
- Entity
- Fire
- GeocentricWorldPosition
- GeodeticWorldPosition
- RelativePosition

13.1 Detonation

Summary: Detonation looks at **Detonation** protocol data units (PDUs) on the Distributed Interactive Simulation (DIS) network and outputs their values for use within the model.

Description: This component is used primarily for triggering sounds and events based on incoming **Detonation** PDUs from the DIS network. **Detonation** presents relevant variables needed to determine the sound, while it ignores other parts of the PDU. It holds all values until it detects another **Detonation** PDU. *Serial* increments with every **Detonation** PDU detected on the network. The **PDU Type** must equal 3 for **Detonation** to present values. All nomenclature is based on the DIS standard for **Detonation** PDUs.

Table 245, "Detonation control outputs" below lists and describes **Detonation** control output variables:

Name	Туре	Default Value	Description
Serial	uint32	0	Increments with each incoming Detonation PDU, such as Type 3 DIS PDUs. All other values in Detonation update with the <i>Serial</i> value based on the incoming packet.
LocationX, Loca- tionY, LocationZ	float32	0.0	The geocentric location in meters.
VelocityX, Velo- cityY, VelocityZ	float32	0.0	The geocentric velocity in meters per second.

Table 245: Detonation control outputs

13.2 Entity

Summary: Entity creates a fully Distributed Interactive Simulation (DIS)-compliant entity protocol data unit (PDU) at a given location.

Description: This component is used primarily to allow the creation of DIS Entity PDUs at a given location without Radio PDUs. It informs other entities of an ownship's location for targeting or other purposes.

Table 246, "Entity control outputs" below lists and describes Entity control output variables:

Name	Туре	Default Value	Description
EntityNameIn	string	<edit></edit>	The entity name. This variable can either be hard -coded or driven from a host interface.
DomainNameIn	string	<edit></edit>	The domain name. This variable can either be hard -coded or driven from a host inter-face.
ProtocolldIn	string	<edit></edit>	The protocol ID. This variable can either be hard- coded or driven from a host interface.
WorldPositionBus	id	UNASSIGNED	Links to a defined world position.
ForceCenterOfEarth	Boolean	FALSE	When set to TRUE , <i>WorldPositionBus</i> is ignored, and the world position is set to the center of the earth.
MyLocationX, MyLocationY, MyLocationZ	float32	0.0	These variables display and output the cur- rent world position.

Table 246: Entity control outputs

13.3 Fire

Summary: Fire looks at Fire protocol data units (PDUs) on the Distributed Interactive Simulation (DIS) network and outputs their values for use within the model.

Description: Fire triggers sounds and events based on incoming Fire PDUs from the DIS network. Fire presents relevant fields needed to determine the sound, while other parts of the PDU are ignored. All values are held until another Fire PDU is detected. *Serial* increments with every Fire PDU detected on the network. PDU Type must equal two for Fire to present the values. All nomenclature is based on the DIS standard for Fire PDUs.

Name	Туре	Default Value	Description
Serial	uint32	0	Increments with each incoming Fire PDU, such as Type 2 DIS PDUs. All other values in Fire update with PDU Value 2, based on the incoming packet.
LocationX, LocationY, LocationZ	float32	0.0	The geocentric location in meters.
VelocityX, VelocityY, VelocityZ	float32	0.0	The geocentric velocity in meters per second.

Table 247, "Fire contro	l outpute" bolow	lists and describes	Fire control	output variables
1 a U C 247, T H C C U H U C	i ouipuis ociow	lists and describes		output variables.

Table 247: Fire control outputs

13.4 GeocentricWorldPosition

Summary: GeocentricWorldPosition provides a simple location feature that positions radios and transmitters.

Description: GeocentricWorldPosition of the transmitter and receiver compute the diminishing power and occult by the Earth for line-of-sight transmissions. The standard model of the Earth is a smooth ellipsoid. A terrain server may be used for accurate modeling.

GeocentricWorldPosition is identical to **GeodeticWorldPosition**, except that the input values for the position are given in terms of X, Y, and Z coordinates from the center of the Earth in meters.

If the world position is 0, 0, 0 (i.e., the center of the Earth), then the ranging effects of any attached radio are turned off, and the radio clearly receives all transmissions on its frequency.

Table 248, "GeocentricWorldPosition control inputs" below lists and describes the **Geo-centricWorldPosition** control input variables:

Name	Туре	Default Value	Description
X	float64	0.0	The <i>X</i> world position coordinate; units are in meters.
Y	float64	0.0	The Y world position coordinate; units are in meters.
Ζ	float64	0.0	The <i>Z</i> world position coordinate; units are in meters.

Table 249, "GeocentricWorldPosition internal parameter" below describes the **GeocentricWorldPosition** internal parameter:

Name	Туре	Default Value	Description
WorldPositionBus	id	UNASSIGNED	Selects the world position bus to assign a pos- ition.

Table 249: GeocentricWorldPosition internal parameter

13.5 GeodeticWorldPosition

Summary: The **GeodeticWorldPosition** component provides a simple location feature for the radio and transmitter positioning.

Description: The world positions of the transmitter and receiver are used to compute diminishing power and occulting by the earth for the line of sight transmissions. The model of the earth is a smooth ellipsoid (model WGS84). The **GeodeticWorldPosition** is specified in altitude in meters with latitude, and longitude in degrees.

Table 250, "GeodeticWorldPosition control inputs" below lists and describes **GeodeticWorldPosition** control input variables:

Name	Туре	Default Value	Description
Elevation	float64	0.0	The altitude world position coordinate, units are in meters.
Latitude	float64	0.0	The latitude world position coordinate, units are in degrees.
Longitude	float64	0.0	The longitude world position coordinate; units are in degrees.

Table 250: GeodeticWorldPosition control inputs

Table 251, "GeodeticWorldPosition internal parameters" below and describes **Geo-deticWorldPosition** internal parameter variables:

Name	Туре	Default Value	Description
WorldPositionBus	id	UNASSIGNED	Selects the world position bus to assign a position.
Position	worldposn_geo- centric		Selects the world position X, Y, Z coordinates.
X	float64	6378137	
Y	float64	0.0	
Ζ	float64	0.0	

Table 251: GeodeticWorldPosition internal parameters

13.6 RelativePosition

Summary: RelativePosition calculates the relative coordinates and velocities of an entity, used with the **Highway 3D Service** and other orientation-dependent sound models. Figure 42, "NED coordinate planes" below shows **RelativePosition** NED coordinate planes:

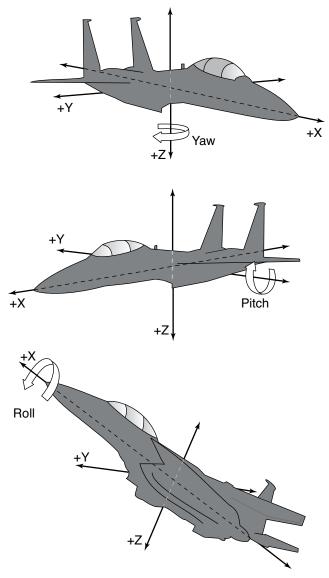


Figure 42: NED coordinate planes

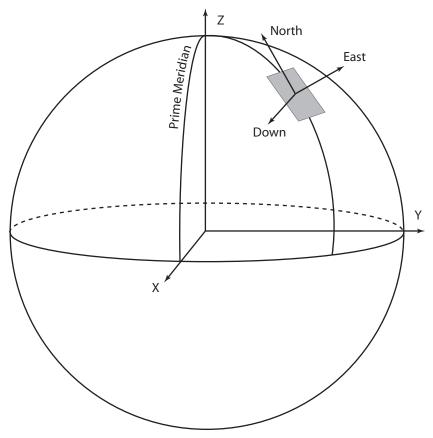


Figure 43, "RelativePosition earth plane" below shows the **RelativePosition** earth plane:

Figure 43: RelativePosition earth plane

Table 252, "RelativePosition control inputs" on the next page lists and describes **Rel-ativePosition** control input variables:

Name	Туре	Default Value	Description
Ent_Alt	float64	1.0	The altitude of the entity position.
Ent_Lat	float64	1.0	The latitude of the entity position.
Ent_Lon	float64	1.0	The longitude of the entity position.
Ref_Alt	float64	1.0	The altitude of the reference position.
Ref_Lat	float64	1.0	The latitude of the reference position.
Ref_Lon	float64	1.0	The longitude of the reference position.
Ref_Yaw	float64	1.0	The measure of the angle formed from True North to the entity's +X axis. This angle is specified in degrees and is positive clockwise along the +Z axis.

Name	Туре	Default Value	Description
Ref_Pitch	float64	1.0	The measure of the angle between the reference plane and the entity's +X axis. This angle is specified in degrees and is positive above the reference plane (i.e., away from the ellipsoid).
Ref_Roll	float64	1.0	The measure of the angle between the reference plane and the entity's +Y axis along a plane per- pendicular to the entity's X axis. It is the angle of rota- tion about the X axis after applying the yaw and pitch. Roll is specified in degrees and is positive clockwise along the +X axis.

Table 252: RelativePosition control inputs

Table 252, "RelativePosition control inputs" above lists and describes **RelativePosition** control output variables:

Name	Туре	Default Value	Description
Distance	float64	0.0	Distance from the reference point to the entity in meters.
ApproachSpeed	float32	0.0	The rate at which the entity and reference pos- itions approach each other in meters per second.
Ent_X	float64	6378137	The X position of the entity in the geocentric coordinate system.
Ent_Y	float64	0.0	The Y position of the entity in the geocentric coordinate system.
Ent_Z	float64	0.0	The Z position of the entity in the geocentric coordinate system.
Ent_Speed	float32	0.0	The instantaneous speed of the entity in meters per second.
Ref_X	float64	6378137	The X position of the reference point in the geo- centric coordinate system. Units are in meters.
Ref_Y	float64	0.0	The Y position of the reference point in the geo- centric coordinate system. Units are in meters.
Ref_Z	float64	0.0	The Z position of the reference point in the geo- centric coordinate system. Units are in meters.
Rel_X_Pos	float64	0.0	The X position of the entity relative to the position and orientation of the reference frame.

Name	Туре	Default Value	Description
Rel_Y_Pos	float64	0.0	The Y position of the entity relative to the position and orientation of the reference frame.
Rel_Z_Pos	float64	0.0	The Z position of the entity relative to the position and orientation of the reference frame.
Rel_X_Vel	float32	0.0	The relative velocity in the X direction between the reference and entity positions.
Rel_Y_Vel	float32	0.0	The relative velocity in the X direction between the reference and entity positions.
Rel_Z_Vel	float32	0.0	The relative velocity in the X direction between the reference and entity positions.

Table 253: RelativePosition control outputs

Table 254, "RelativePosition debugging variables" on the next page lists and describes **Rel-ativePosition** debugging variables:

Name	Variable	Туре	Default Value	Description
E_Axis	Х	float64	0.0	The vector pointing east in the
	Y		1.0	local geographic frame of the ref- erence position.
	Ζ		0.0	
D_Axis	Х	float64	-1.0	The vector pointing down in the
	Y		0.0	local geographic frame of the ref- erence position.
	Ζ		0.0	
N_Axis	Х	float64	0.0	The vector pointing north in the
	Y		0.0	local geographic frame of the ref- erence position.
	Ζ		1.0	
Vec_To_Entity	Х	float64	0.0	Shows the direction to the entity
	Y		0.0	from the reference position.
	Ζ		0.0	
X_Axis	X	float64	0.0	The vector pointing forward from the reference position (e.g., the
	Y		0.0	vector pointing through the nose of the airplane, if the airplane is
	Ζ		1.0	the reference).

Name	Variable	Туре	Default Value	Description	
Y_Axis	Х	float64	0.0	The vector pointing down from the	
	Y		1.0	reference position.	
	Ζ		0.0		
Z_Axis	Z_Axis	Х	float64	-1.0	The vector pointing down from the
	Y		0.0	reference position.	
	Ζ		0.0		

Table 254: RelativePosition debugging variables

14.0 Host Control

Before adding **HostIns** and **HostOuts**, you must first add a host model. A host model is required to create the host I/O packets. Inside the host model, add a **HostIn** or **HostOut**, and add the host I/O components, also known as packets.

To debug the host control, figure out if packets are coming in off the network from the host. To determine packet activity, pay close attention to two items in the host interface:

- Live Capture: continuously displays packet activity from the host.
- *Controller*: displays packet statistics.

In *Controller* (i.e., **HostIn Viewer**), **Fail Count** always shows data if the host is working. The numbers continue to increment in a loop. **Total Packets Received** increments over time if the host control is working properly. *TestIn* and *TestOut* are for ASTi internal testing. Contact ASTi for more information.

14.1 HostIn

Summary: HostInput (HostIn) is a user interface wrapper for control data fields extracted from external sources, including host Ethernet control User Datagram Protocol (UDP) packets and state machine cells, providing a means to apply incoming control data to other components in the model. This section describes **HostIn** as used with the host Ethernet.

You can create and modify **HostIn** with **IO Packet Editor**. With this tool, define the source of the data packet by the UDP port. Extracted individual **HostIns** to other model components, serving as control variables.

Description: IO Packet Editor provides a means to functionally disassemble a host UDP packet into individual fields. **HostIn** is the composite collection of individual data fields in a specific packet. Other model components (i.e., data sinks) sometimes use **HostIn's** control variables.

HostIn is analogous to the various **Control** objects in **Model Builder**. There is one fundamental difference between **HostIn** and an (MB) control object: MB includes a separate control object for each data type, while **HostIn** accommodates all available data types.

The process for creating and using HostIn follows:

- 1. In **IO Packet Editor**, enter the UDP port name of the host packet and the most-least significant data order (i.e., big or little endian).
- 2. To create a variable within **HostIn**, enter the parameters defining the data field: offset byte location within the packet (or in the case of a Boolean field, offset byte and bit), the data type, and the initial value for the field.

After creating a **HostIn** data source, link it to a variable (i.e., data sink) inside another component. The action of making a link is done on the sink side of the link. The link is visible from the source side (i.e., the **HostIn Used By** shows the sink component name) and from the sink side (i.e., the sink component **From** shows **HostIn** name).

Table 255, "HostIn interface elements" on page 214 lists and describes HostIn interface elements:

Setting Name	Description	
Name	A descriptor for the component.	
Offset	The location of the data field within the packet, defined by the byte offset from the start of the data field. The location of a packed byte input is further defined by the bit position within a particular byte.	
MsgLength	Message length in bytes.	
Туре	 Hostin can be set to one of these data types: Unsigned integer, 8-bit (uint8) Unsigned integer, 16-bit (uint16) Unsigned integer, 32-bit (uint32) Unsigned integer, 64-bit (uint64) Signed integer, 8-bit (int8) Signed integer, 16-bit (int16) Signed integer, 32-bit (int32) Signed integer, 64-bit (int64) Floating point, 32-bit (float32) Floating point, 64-bit (float64) Boolean, (byte) True_False Character string (cstring) Nav identifier (ident) Packed byte (bits8_0-bits8_7) Binary message (message) Text file path (pathstring) 	
Init. Value	The data field's initial value can be set by the application should the source packet not be present due to failure to receive host packets. This is directly analogous to the initial value featured in MB Control objects.	
Function	Add a basic function, including Add , Linear , Logical-and , Logical-or , Logical-xor , Multiple , and Subtract .	
Y	Value used if a function is used. For more information, go to Section 5.14, "MathFunction" on page 109.	
Z	Value used if a function is used. For more information, go to Section 5.14, "MathFunction" on page 109.	
Rscale	Adds a scale factor to apply to the output of the function; works as the gain con- trol. For more information, go to Section 5.14, "MathFunction" on page 109.	

Setting Name	Description
Test Mode	A local test mode can override the incoming value from the host packet and manually set the value of a variable. Test modes for various fields can be selectively enabled. A master test mode enable switch activates the test mode for all test mode-enabled boxes. All boxes that are not test-mode enabled continue to get their value from either the host packet or their initial value if selected to do so and no host packets are being received. The application checks test mode values for correct range. If an out-of-range test value is entered, the application returns the default value. Selections = ON or OFF
Integers, all types	 Test Mode Boolean, default value =OFF Value Integer, default value = 0 Ramp Rate (Hz) Floating Pt., default value = 0.0 Min Ramp Value Integer, default value = 0 Max Ramp Value Integer, default value = 0
Floats, all types	 Test ModeBoolean, default value = OFF ValueFloating Pt, default value = 0 Ramp Rate (Hz) Floating Pt., default value = 0.0 Min Ramp Value Floating Pt, default value = 0.0
Boolean	 Test Mode Boolean, default value = OFF Value Boolean, default value = 0 Toggle Rate (Hz) Floating Pt, default value = 0.0 Mark/Space Floating Pt, default value = 0.5
For integers and floats	If Test Mode = ON and Ramp Rate = 0, the value sets a static test value. If Test Mode = ON and Ramp Rate > 0, the value is overridden, and a dynamic test value periodically ramps from Min Ramp to Max Ramp and back to Min Ramp . The Ramp Rate is in Hertz.
For Booleans	If Test Mode = ON and Toggle Rate = 0, the value sets a static test value. If Test Mode = ON and Toggle Rate >0, the value is overridden, and a dynamic test value toggles between 1 and 0. The Toggle Rate is in Hertz. The Mark/Space ratio controls how long the Boolean is 1 relative to the cycle dur- ation. The Boolean is 0 for the period of the entire 1/0 toggle cycle (e.g., a value of 0.5 means that in a given period, the Boolean output is 1 for half of the time and 0 for the other half).
Test Value	Sets the desired test value the component will use.
Used By	Defines connection to a control sink point (i.e., variable) in another component. Note : You can modify HostIn's value (e.g., inverted, scaled, offset) at the
Other	<i>link's sink point.</i> Edits the dynamic test parameters, specifically the <ramp></ramp> setting, including mode, frequency, minimum, and maximum.

Setting Name	Description	
Description	Used for comments.	

Table 255: HostIn interface elements

Table 256, "HostIn control output" below lists and describes the **HostIn** control output variable:

Name	Туре	Default Value	Description
N/A	Control data	N/A	The Hostin output value is based on para- meters that you set (i.e., offset byte, data type, etc.).

Table 256: HostIn control output

Table 257, "HostIn internal parameters" on the facing page lists and describes **HostIn** internal parameter variables:

Name	Туре	Default Value	Description
Endianess	List	Little Endian	Changes the byte order. The endianness defines the byte order for the data in a packet.
Use Init Value	List	Never	 This list box decides what should happen in the event of a loss of reception of UDP packets. <i>Never</i>: if UDP data stops, the outputs from HostIn go to zero. <i>Load</i>: when the project loads, HostIn outputs Init. Value values until it receives UDP packets. <i>Load/Source Fail</i>: upon loss of UDP packets for a period exceeding the value in Timeout(s), HostIn outputs the values in Init. Value.
Enable Testing	Check box	Selected	Allows operation of Test Mode , Test Value , and Other for local testing. When cleared, these settings are disabled.
Timeout (s)	Entry box	1	Sets the threshold for assumed communication failure when a packet has not arrived within the set amount of time in seconds.
Clear Testmode	Radio but- ton	N/A	This radio button resets any On entries in Test Mode to Off .

Name	Туре	Default Value	Description
Align Offset	Radio but-	N/A	Byte-aligns entries in the ICD.
	ton		<i>Note:</i> This variable does not work with packed bytes.
Add To Connector	Radio but- ton	N/A	Links selected entries in the ICD to a specified connector.
Live Capture	Select	N/A	Opens a window showing the current values for each entry in the ICD in real time. You can also capture and save the display as a comma-sep- arated value (.csv) file.
Import ICD	Select	N/A	Select a .csv file to fill the entries in the Host Packet Editor .
Controller	Select	N/A	Opens the HostIn Viewer for the associated UDP interface for this packet.

Table 257: HostIn internal parameters

14.2 HostOut

Summary: Host Output (HostOut) provides a way to send control values from the model to a destination host computer via the system's Ethernet interface.

Create and modify **HostOuts** with the **IO Packet Editor**. With this tool, define the outgoing host data packet by the user datagram protocol (UDP) port, then link model control sources to individual control variables within the outgoing packet. Model control sources include any component with a control output:

- Host input
- Math components
- Component status fields

Description: IO Packet Editor provides a means to functionally assemble a host UDP packet from individual model controls. **HostOut** is a composite collection of specific data fields from model controls, packed into an outgoing Ethernet packet.

HostOut is analogous to the various control objects in **Model Builder**. There is one fundamental difference between **HostOut** and **Model Builder**:

- 1. Whereas the **Model Builder** included a separate control object for each data type, **HostOut** encompasses all variables within an outgoing packet.
- 2. Additionally **HostOut** accommodates all available data types.

The process for creating and using HostOut follows:

- 1. In **IO Packet Editor**, enter the UDP port of the destination host computer and the most-least significant data order (big or little endian).
- 2. To create a field within **HostOut**, define the parameters defining the data field (i.e., offset byte location within the packet, or in the case of a Boolean field, offset byte and bit and the data type) and link to a model control source.

Each field in **HostOut** is defined by the following:

- *Name*: contains a description of the component.
- *Offset*: the location of the data field within the packet, defined by the byte offset from the start of the data field. The location of a packed-byte input is further defined by the bit position within the byte.
- *MsgLen*: message length in bytes.
- *Type*: **HostOut** can be set to one of these data types:
 - Unsigned Integer, 8-bit (uint8)
 - Unsigned Integer, 16-bit (uint16)
 - Unsigned Integer, 32-bit (uint32)
 - Unsigned Integer, 64-bit (uint64)
 - Signed Integer, 8-bit (int8)
 - Signed Integer, 16-bit (int16)
 - Signed Integer, 32-bit (int32)
 - Signed Integer, 64-bit (int64)
 - Floating Point, 32-bit (float32)
 - Floating Point, 64-bit (float64)
 - ° Boolean, 1-byte
 - Character string (cstring)
 - Nav identifier (ident)
 - Packet byte (bits8_0-bits8_7)
 - Binary message (message)
 - Text file path (pathstring)

- *Used by*: the source field defines the link to a model control source.
- *Description*: comments field.

Table 258, "HostOut control output" below describes the HostOut control output variable:

Name	Туре	Default Value	Description
N/A	Control data	N/A	The HostOut value is based on parameters (i.e., off- set byte, data type, source, etc.).

Table 258: HostOut control output

Table 259, "HostOut internal parameters" below lists and describes **HostOut** internal parameters:

Name	Туре	Default Value	Description
Endianness	List	Little Endian	Changes the byte order. The endianness defines the byte order for the data in a packet.
Timeout (s)	Entry box	1	Sets the threshold for assumed communication failure when a packet has not arrived within the set amount of time in seconds.
AlignOffset	Radio button	N/A	Correctly byte-aligns entries in the ICD.
AddToConnector	Radio button	N/A	Links selected entries in the ICD to a specified connector.
LiveCapture	Select	N/A	Opens a window showing the current values for each entry in the ICD in real time. You can also capture and save the display as a comma-sep- arated value (.csv) file.
ImportICD	Select	N/A	Lets you upload a .csv file to fill Host Packet Editor entries.
Controller	Select	N/A	Opens the HostOut Viewer for the associated UDP interface for this packet.

Table 259: HostOut internal parameters

14.3 CellService

Summary: CellService provides an invisible data connection between objects that declare they are attached to a common cell channel. All connectivity between a specific cell channel and the source and source or sink objects is carried out via cell service links.

Г	^{- - -}]	
Т	=	
Т	=	
L	_	

Note: As with all service-type components, you do not manually instigate the creation of the service object; this is done automatically on demand by the loader when it detects that a component has a cell service port connection. Only one service component of the appropriate type will be loaded based on the first found need for a service of this type.

Description: The only user-defined input to this primitive will be the selected bus handle. No other inputs or settings are required. Available buses for use are declared through the **CellService** tool. Within the tool, a bus name is defined and the tool assigns an internal index number as a bus ID. By default, the tool assigns the bus ID numbers incrementally. Internally the cell service uses the bus ID number to link inputs and outputs.

14.3.1 CellIn

Summary: **Cell Input** (i.e., **CellIn**) serves as a user interface wrapper for control data fields extracted from external sources. These sources include host Ethernet control User Datagram Protocol (UDP) packets and state machine cells that apply incoming control data to other components in the model.

Description: CellIn is a collection of 40 individual data bytes in a specific packet. The individual bytes within CellIn (i.e., data sources) are used as control variables by other model components (i.e., data sinks).

Name	Туре	Default Value	Description
CellData	uint8	0	A collection of 40 unsigned bytes that connect to other components in the model.
NewCellData	Boolean	FALSE	When TRUE , new cell data UDP packets are recognized. This input was created for specific use by the LS653 state machine.

Table 260, "CellIn control inputs" below lists and describes CellIn control input variables:

Table 260: CellIn control inputs

Table 261, "CellIn internal parameters" below lists and describes **CellIn** internal parameter variables:

Name	Туре	Default Value	Description
CellBusId	id	UNASSIGNED	Assigns to CellService , linking components together.
CellReceiveCount	uint32	0	The count of the number of cells received from the cell daemon.

Table 261: CellIn internal parameters

14.3.2 CellOut

Summary: CellOut transmits bytes of data generated by specific components.

Description: **CellOut** provides a way to send control values from the model to a destination host computer via the system, using an Ethernet interface. **CellOut** is a composite collection of specific data bytes from model controls, packed into an outgoing Ethernet packet.

Table 262, "CellOut control output" below describes the CellOut control output variable:

Name	Туре	Default Value	Description
CellData	uint8	0	<i>CellData</i> can only be a collection of 40 unsigned bytes, each of which can be used as a control to connect to other components within the model.

Table 262: CellOut control output

Table 263, "CellOut internal parameters" below lists and describes **CellOut** internal parameters:

Name	Туре	Default Value	Description
CellBusId	id	UNASSIGNED	Assigns to Cell Bus Service, linking components together.
CellTransmitCount	uint32	0	The count of the number of cells transmitted from the cell daemon.

 Table 263: CellOut internal parameters

15.0 Radio

Building radios in Telestra is slightly different from the traditional modeling used in other ASTi generations of software. A basic radio is now made up of two components: a **Transceiver** and a Radio Control Unit (RCU). The two objects are analogous to live radios on many aircraft. Typically, a base unit is responsible for the over-the-air transmission known as the radio transceiver (RT) and control heads that serve as the interface for the pilot or copilot.

The idea in Telestra is that every radio requires use of **Transceiver**, a master object which can be used for any radio, but it contains a minimum of settings. This way, if you want to simulate two different types of radios, the RCU is used to customize the **Transceiver** to be an ARC-210 versus an ARC-232.

The third piece of the radio is the fill that it receives from the **commplan** located in the project **Layout** of the project. The **commplan** provides a flexible way of adjusting internal radio parameters such as **Modulation Type** or the **Transmit Gain**. Previous generations of ASTi software accomplished the fill as a **Mode Table** within **Radio**. The fills in the Comm Plan make it easy to share mode settings across several radios in a model. In addition to the different mode settings, the fill of a radio can also set default frequencies.

The most commonly set radio uses two components:

- Transceiver
- RCUbasic

The RCU provides a fill from the **commplan** as well as a suite of parameters that can override their counterparts from within the fill. For example, **RCUbasic** has a loaded fill using Net 1, which sets the frequency of the radio to 101 megahertz (MHz). This information is sent down to **Transceiver** via *Transceiver ID* located in both components. To keep every setting in the net the same except for a new frequency of 105 MHz, set the frequency of the RCU to 105 MHz, which overrides the fill, and **Transceiver** acts accordingly.

A radio can switch between any number of nets, defined in the **commplan**, each of which can be custom-tailored to provide control over parameters such as modulation, noise, bandwidth, cryptosystem and key, frequency-hopping net ID, satellite communications (SATCOM), and other parameters. The default **commplan** fill supports the most common modes used by real radio frequency (RF) radios, including ultra high frequency (UHF), very high frequency (VHF), high frequency (HF), Single Channel Ground and Airborne Radio System (SINCGARS), and HAVEQUICK (HQ). This allows you to get started quickly while retaining the flexibility to further fine tune the simulation. **Transceiver** is also capable of receiving and transmitting Tactical Data Link (TDL) messages. Various voice-encoding schemes are also supported including Continuously Variable Slope Delta (CVSD), mu-law and pulse-code modulation (PCM).

In general, settings that relate to how the radio appears on the network are in **Transceiver**, and settings that customize the radio for simulation are placed in the RCU.

The following section details **Radio** components and the objects within them. **Radio** components include the following:

- ColocatedBeacon
- GenericControl
- HfServer
- ICU
- IntercomTransceiver
- MarkerTone
- MorseKeyer
- RCUbasic
- RCUcryptokey
- RCUfrequency
- RCUhavequick
- RCUoverride
- RCUsincgars
- RCUtxpower
- Receiver
- Relay
- Satellite
- Transceiver
- Transmitter
- VORTAC_Controller

15.1 ColocatedBeacon

Summary: **ColocatedBeacon** creates the audio to simulate colocated *VOR* and *TACAN* transmitters. Morse identifier tones generate for both transmitters.

Description: Allocated *VOR* and *TACAN* transmitters present a special case when simulating navigational aids. Both transmitters produce a Morse identifier that constantly broadcast over the air, but the IDs broadcast in sequence. As a result, **ColocatedBeacon** is actually two separate **MorseKeyers** that never play at the same time.

Figure 44, "ColocatedBeacon timing diagram" below shows basic timing:

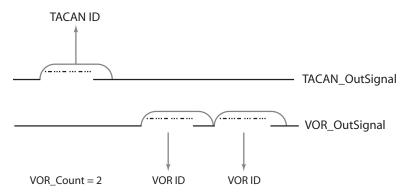


Figure 44: ColocatedBeacon timing diagram

Table 264, "ColocatedBeacon audio outputs" below lists and describes **ColocatedBeacon** audio output variables:

Name	Туре	Default Value	Description
TACAN_OutSignal	audio	N/A	Outputs the keyed word for <i>TACAN</i> radio at appropriate intervals when ColocatedBeacon is enabled.
VOR_OutSignal	audio	N/A	Outputs the keyed word for <i>VOR</i> radio at appro- priate intervals when ColocatedBeacon is enabled.

Table 264: ColocatedBeacon audio outputs

Table 265, "ColocatedBeacon control inputs" on the facing page lists and describes **ColocatedBeacon** control input variables:

Name	Туре	Default Value	Description
Enable	Boolean	TRUE	TRUE enables ColocatedBeacon.
ldent	ident	N/A	The ASCII characters driving MorseKeyer . <i>Ident</i> is special variable type defined as four ASCII characters combined together. Only HostIn can drive <i>Ident</i> .
Interval	float32	1.0	Sets delay between words in seconds.
TACAN_Fre- quency	float32	1.0	Provides frequency (i.e., pitch) of <i>TACAN</i> Morse tone. Units are in Hertz.
TACAN_Gain	float32	1.0	Scales strength of <i>TACAN</i> output signal's generated tone.

Name	Туре	Default Value	Description
TACAN_ILSPause	Boolean	FALSE	Places space between <i>Ident's</i> first and second characters. When FALSE , <i>TACAN</i> keyer uses normal Morse code inter-character timing (i.e., three-dot gap between each <i>Ident</i> character). When TRUE , <i>TACAN</i> keyer uses standard Morse code interword timing between first and second characters (i.e., seven-dot gap). Inter- character timing for subsequent <i>Ident</i> characters use standard Morse code intercharacter spacing (i.e., three-dot gap).
VOR_Count	uint16	1	Number of times <i>VOR</i> identifier plays before key- ing <i>TACAN</i> identifier. <i>VOR</i> and <i>TACAN</i> identifier tones are mutually exclusive.
VOR_Frequency	float32	1.0	Sets <i>VOR</i> Morse tone's frequency (i.e., pitch). Units are in Hertz.
VOR_Gain	float32	1.0	Scales strength of <i>VOR</i> output signal's generated tone.
VOR_ILSPause	Boolean	FALSE	Places a space between the first and second characters of the <i>Ident</i> . When FALSE , the <i>VOR</i> keyer uses normal Morse code intercharacter tim- ing, which is a three-dot gap between all <i>Ident</i> characters. When TRUE , the <i>VOR</i> Keyer uses a standard Morse code inter-word timing between the first and second characters (i.e., a seven-dot gap). Inter-character timing for subsequent <i>Ident</i> characters use standard Morse code inter- character spacing (i.e., a three-dot gap).
Wordrate	uint8	1	Determines the rate that the word keys in dots per second. Faster rates produce higher numbers.

Table 265: ColocatedBeacon control inputs

Table 266, "ColocatedBeacon control outputs" below lists and describes **ColocatedBeacon** control output variables:

Name	Туре	Default Value	Description
TACAN_Active	Boolean	FALSE	TRUE when keying a dot/dash, mimicking the keyer's beep.
VOR_Active	Boolean	FALSE	When keying a dot or a dash, this variable becomes TRUE , mimicking the keyer's beep.
TACAN_Busy	Boolean	FALSE	Indicates if the <i>TACAN</i> keyer is actively pro- ducing Morse audio.
VOR_Busy	Boolean	FALSE	This flag indicates if the <i>VOR</i> keyer is actively producing Morse audio.

Table 266: ColocatedBeacon control outputs

15.2 GenericControl

Summary: Generic radio control for the radio simulated environment.

Description: GenericControl is a Radio Control Unit (RCU) designed for use where multiple RCUs are hooked onto the same Transceiver. It mimics RCUbasic with one key exception: any updates to the parameters of the RCU are sent to Transceiver on a change instead of all the time. This process allows the model to have two GenericControls, each with a different frequency, correctly driving Transceiver. At any given time, Transceiver takes the last sent value for a parameter and ignore those same settings on other RCUs. Figure 45, "GenericControl timing diagram" below illustrates **GenericControl** changing the frequency of **Transceiver** in time:

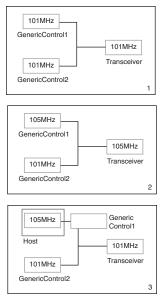


Figure 45: GenericControl timing diagram

Table 267, "GenericControl control inputs" below lists and describes **GenericControl** control input variables:

Name	Туре	Default Value	Description
CryptoKey	uint16	0	For radio encryption to work, match- ing crypto keys are required in all crypto modes. This variable must be identical for tuning.
Fill	fill	<select></select>	Insert the fill created in the Comm Plan by double-clicking Value .
FreqHopNetID	uint16	0	Frequency-hopping network ID.
FreqHopSyncTOD	uint32	0	Identifies the time of day used in fre- quency hopping.
FreqHopTranSecKey	uint16	0	TranSec key for hop-pattern gen- eration.
FreqHop HopSetWOD	uint16	0	Identifies the set of frequencies used in hopping pattern.
FreqHopLockOutId	uint16	0	Excluded frequencies in hop pattern.
FreqHopSystem	uint16	0	Sets the system type to enable fre- quency hopping, such as HAVEQUICK or SINCGARS. When the value is 0, hopping is disabled.
Frequency	uint64	0	Current radio tune frequency in Hertz.
Net	uint32	1	Net defines the core radio features, including frequency, Tx frequency, waveform, crypto, and frequency hopping. <i>Net</i> parameters are set in the commplan .
Transceiverld	id	UNASSIGNED	<i>TransceiverID</i> tells the RCU which Transceiver it should control.
TxFrequency	uint64	0	The transmit frequency in Hertz. For use only if the transmit frequency dif- fers from the receive frequency.
TxPower	float32	0.0	Radio Tx power in Watts.

Table 267: GenericControl control inputs

15.3 HfServer

Summary: **HfServer** allows control of the **HfServer** application, providing real-time, high-fidelity modeling of HF radios.

Description: **HfServer** computes propagation effects between virtual radios, taking into account such things as transmitter-receiver global position, season, time of day (i.e., day-night terminator), and solar activity. To properly simulate solar activity and seasonal and circadian effects on the ionosphere and high frequency (HF) radio signal propagation, **HfServer** requires that the *Smoothed Sunspot Number (SSN)* and *Time-of-Day* offset be set. These parameters are set through use of **HfServer**.

Note: Set configuration parameters related to the *HfServer's* network behavior, (e.g., the interface and User Datagram Protocol (UDP) port number to send or receive HF requests) via the Distributed Interactive Simulation (DIS) gateway configuration in the project.

Use *Offset* to force **HfServer** to return results for a night mission, even though the exercise takes place during the day. Likewise, use seasonal effects typical of winter propagation in July.

For example, if you're conducting an exercise on the East Coast of the US during summer (GMT +5) at 8:00 a.m. (08:00 Eastern Standard Time), **HfServer's** local clock reads 13:00 GMT. If the simulated scenario takes place on the West Coast of the US, during summer (GMT +8) at 3:30 p.m. (15:30 Pacific Standard Time), then a clock in the simulated world reads 23:30 GMT. The difference between the simulated GMT (23:30) and the real-world GMT (13:00) is the time-of-day *Offset* (i.e., +10.5 hours).

Table 268, "HfServer control inputs" below lists and describes **HfServer** control input variables:

Name	Туре	Default Value	Description
SSN	uint32	100	Smoothed Sunspot Number. Typical values of the <i>SSN</i> range from 0–250, depending on past and current sunspot activity.
Offset	int32	0	Time-of-day offset in seconds between the HfServer clock (local time in GMT) and the simulation time (in GMT).
DomainNameIn	string	N/A	Lets a host platform set the domain name string remotely. This input typically works in conjunction with NumToString . Go to the <i>DomainName</i> string definition for syntax.

Table 268: HfServer control inputs

Table 269, "HfServer internal parameter" below describes the **HfServer** internal parameter variable:

Name	Туре	Default Value	Description
DomainName	string	<edit></edit>	(Required) Part of the ASTiNet property set that defines a common communication environment. Radios in the same domain can communicate, while radios in separate domains cannot. It's ana- logous to a DIS exercise ID or an HLA Federation name. As an ASCII string, Transceiver is a native ASTiNet radio. When that string matches a defined DIS domain in a project, it maps the domain name to a DIS exercise ID. To define a DIS exercise ID , enter "DIS: <i>N</i> ", where <i>N</i> =1–255. For example, "DIS:1" places the radio in DIS exercise ID #1. <i>Important: DomainName specifies which HF con- figuration is valid. Use this variable to control mul- tiple domains with multiple</i> HfServers .

Table 269: HfServer internal parameter

15.4 IntercomTransceiver

Summary: IntercomTransceiver is a simple version of **Transceiver** that works with **Intercom Control Unit (ICU)** to create a network intercom.

Description: IntercomTransceiver connects to an ICU to create a network intercom that broadcasts audio over the Distributed Interactive Simulation (DIS) network. Unlike the Transceiver, the IntercomTransceiver operates as an intercom only. It does not have the full radio features.

Table 270, "IntercomTransceiver control inputs" below lists and describes **Inter-comTransceiver** control input variables:

Name	Туре	Default Value	Description
DomainNameIn	string	N/A	Allows a host platform to set the domain name string remotely. This input is typically used in conjunction with NumToString .
LocalPTT	Boolean	FALSE	When FALSE , the radio transmits when it receives active audio and stops transmitting when the audio stops. When TRUE , the radio transmits per- sistently, even if it does not receive active audio.
PowerIn	Boolean	TRUE	Enables or disables power for Inter- comTransceiver . If disconnected, the default value is TRUE .
ProtocolldIn	string	N/A	Allows a host platform to set the <i>ProtocolldIn</i> string remotely. This input is typically used in conjunction with NumToString .

Table 270: IntercomTransceiver control inputs

Table 271, "IntercomTransceiver control outputs" below lists and describes **Inter-comTransceiver** control output variables:

Name	Туре	Default Value	Description
TxStatus	'		·
TxAudio	audio	N/A	Audio input feed functioning Tx audio for Trans- ceiver.
TxActive	Boolean	FALSE	Shows if IntercomTransceiver is transmitting.
RxStatus			
RxAudio	audio	N/A	Received audio fed to the intercom service.
RxActive	Boolean	FALSE	Shows if IntercomTransceiver is receiving.
LocalAudio			
RxTuneTone	audio	N/A	Audio input that functions as audio received from Transceiver's receiver stage.

 Table 271: IntercomTransceiver control outputs

Table 272, "IntercomTransceiver internal parameters" below describes **IntercomTransceiver** internal parameters:

Name	Туре	Default Value	Description		
RCUParameter	RCUParameters				
NetName	string	<edit></edit>	Net name of RCUbasic .		
Audio					
encoding-rate	uint32	8000	Encoding rate of RCUbasic .		
encoding-type	EncodingType	MuLaw	Encoding type of RCUbasic .		
TxStatus					
TxChannel	uint64	0	Reflects the transmit channel set in the ICU.		
TxPower	float32	1.0	Not used.		

Table 273, "Other IntercomTransceiver internal parameters" on the facing page lists and describes other **IntercomTransceiver** internal parameter variables:

Name	Туре	Default Value	Description
DomainName	string	<edit></edit>	Part of the ASTiNet property set and defines a common communication envir- onment. All Transceivers in the same domain have the ability to communicate, and Transceivers in separate domains can never communicate. It is analogous to a DIS exercise ID or a high-level archi- tecture (HLA) Federation name. As an ASCII string, Transceiver is an ASTiNet Radio. When that string matches a defined DIS domain as the project level, it maps the domain name to a DIS exercise ID. As a shortcut, define a DIS exercise ID by entering DIS : <i>N</i> , where $N = 1-255$. For example, DIS :1 puts the Transceiver in DIS exercise ID #1.
IntercomBus	id	UNASSIGNED	Assigns IntercomTransceiver to Inter- comBusService. IntercomBusService allows for input audio, sidetone audio, and output audio to be passed around among components that are connected to the bus.

Name	Туре	Default Value	Description
IntercomName	string	<edit></edit>	Set an identification name for the Inter- comTransceiver.
Mode	TunerMode	None	Displays whether IntercomTransceiver is in Voice over Internet Protocol (VoIP) or intercom mode. Radio modes are not sup- ported.
NetName	string	<edit></edit>	Indicates the set net name.
PowerBus	id	UNASSIGNED	Connects to <i>PowerService</i> to receive power instead of using a control.
PowerState	Boolean	TRUE	Displays the power state of Inter- comTransceiver.
ProtocolID	string	<edit></edit>	 Turns a radio into a DIS radio by setting the DIS identifiers (e.g., Host ID, Radio ID). <i>ProtocolID</i> sets Marking Field, labeling the radio "local" and unpublished on the network. <i>DIS:#.#.#.</i> sets the site, application, entity, and radio IDs. <i>DIS:#.#.</i> sets the entity and radio IDs. <i>DIS:#.#.</i> sets the radio ID. <i>DIS:#.</i> sets the radio ID. <i>DIS:#.</i> sets the radio as "local" and unpublished on the network. If any are blank, the variable automatically generates remaining identifiers. It sets the site and application ID via the IP address's last two octets. It also automatically generates the entity and radio IDs. You can append the above examples with another colon and the DIS marking field. For example, DIS:100.3:RedForce1 sets the Entity ID to 100, the Radio ID to 3, and the Marking Field to RedForce1 .
RxChannel	uint64	0	Reflects the receive channel set in the ICU.
TransceiverID	id	UNASSIGNED	Defines the connection between the Inter- comTransceiver and the ICU.

Table 273: Other IntercomTransceiver internal parameters

15.5 ICU

Summary: ICU works with IntercomTransceiver to create a network intercom.

Description: The network intercom provides a simple method of running networked communications and is the easiest way to connect two operators over a network. The ICU component is a control unit for **Transceivers** and removes most of the radio functionality such as bandwidth or propagation. Two intercoms must be in INTERCOM mode per the net and fill and have a matching channel, in the same way two radios must have a matching frequency.

The ICU helps to extend intercom capability beyond local operators and goes across a local area network (LAN) or wide area network (WAN) allowing multiple Telestra servers to communicate with each other when full fidelity radios are not required or desired. The ICU also uses fewer credits than a network radio.

Note: The *ICU* component can be used with the *Transceiver*, but that is not a recommended configuration.

Table 274, "ICU control	immutal halaw	lists and describes	ICII agenteral	immut vomiablage
Table 2/4, TCU control	inputs below	lists and describes	ICU control	input variables:

Name	Туре	Default Value	Description
Fill	fill	<select></select>	Insert the fill created in the Comm Plan by double- clicking Value .
Net	uint32	1	Set in the Comm Plan . Set all nets to Intercom mode or use the default Clearcom net.
TransceiverID	id	UNASSIGNED	<i>TransceiverID</i> tells the ICU which Inter- comTransceiver it should control.
Channel	uint64	0	Defines the ICU channel number. In order to receive over the network, both channel numbers must be equal. Valid values are 0–99,999.

Table 274: ICU control inputs

15.6 MarkerTone

Summary: MarkerTone add navigational beacons to a model.

Description: MarkerTone adds the Outer Marker, Middle Marker, Inner Marker, and Fan Marker navigational beacons to a model. The default values are set to FAA standards. While the component provides four separate beacons, the component can only consider one of the beacons at a time. An input control selects which beacon to use.

Table 275, "MarkerTone audio outputs" below describes the **MarkerTone** audio output variable:

Name	Туре	Default Value	Description
OutSignal	audio	N/A	OutSignal is the audio output signal from Mark- erTone.

Table 275: MarkerTone audio outputs

Table 276, "MarkerTone control inputs" on page 235 describes **MarkerTone** control input variables:

Name	Туре	Default Value	Description
Enable	Boolean	TRUE	When TRUE , MarkerTone is enabled.
Frequency1	float32	1.0	 Sets the pitch for the keyed tone when <i>IdentIndex</i> is 1. The default is 400 Hz for the Outer Marker. <i>Modifier:</i> 400.0
Frequency2	float32	1.0	 Sets the pitch for the keyed tone when <i>IdentIndex</i> is 2. The default 1300 Hz for the Middle Marker. <i>Modifier:</i> 1300.0
Frequency3	float32	1.0	 Sets the pitch for the keyed tone when <i>IdentIndex</i> is set to 3. The default 3000 Hz for the Inner Marker. <i>Modifier:</i> 3000.0
Frequency4	float32	1.0	 Sets the pitch for the keyed tone when <i>IdentIndex</i> is set to 4. The default is 3000 Hz for the Fan Marker. <i>Modifier:</i> 3000.0
Frequency5	float32	1.0	Sets the pitch for the keyed tone when <i>IdentIndex</i> is5.<i>Modifier:</i> 0.0
Frequency6	float32	1.0	Sets the pitch for the keyed tone when <i>IdentIndex</i> is6.<i>Modifier:</i> 0.0
Frequency7	float32	1.0	Sets the pitch for the keyed tone when <i>IdentIndex</i> is7.<i>Modifier:</i> 0.0

Name	Туре	Default Value	Description
Frequency8	float32	1.0	 Sets the pitch for the keyed tone when <i>IdentIndex</i> is 8. <i>Modifier</i>: 0.0
Gain	float32	1.0	Gain applies a linear volume control to the Mark- erTone audio output.
Interval1	uint16	0.0	Sets the delay between repeating the keyed word when <i>IdentIndex</i> is 1 . Units are in seconds.
Interval2	uint16	0.0	Sets the delay between repeating the keyed word when <i>IdentIndex</i> is 2 . Units are in seconds.
Interval3	uint16	0.0	Sets the delay between repeating the keyed word when <i>IdentIndex</i> is 3 . Units are in seconds.
Interval4	uint16	0.0	Sets the delay between repeating the keyed word when <i>IdentIndex</i> is 4 . Units are in seconds.
Interval5	uint16	0.0	Sets the delay between repeating the keyed word when <i>IdentIndex</i> is 5 . Units are in seconds.
Interval6	uint16	0.0	Sets the delay between repeating the keyed word when <i>IdentIndex</i> is 6 . Units are in seconds.
Interval7	uint16	0.0	Sets the delay between repeating the keyed word when <i>IdentIndex</i> is 7 . Units are in seconds.
Interval8	uint16	0.0	Sets the delay between repeating the keyed word when <i>IdentIndex</i> is 8 . Units are in seconds.
IdentIndex	uint8	1.0	Selects which marker beacon (<i>IdentChar</i>) is trans- mitted. A value of 0 selects none. A value of 1 selects <i>Ident1</i> (i.e., Outer Marker). A value of 2 selects <i>Ident2</i> (i.e., Middle Marker). A value of 3 selects <i>Ident3</i> (i.e., Inner Marker). A value of 4 selects <i>Ident4</i> (i.e., Fan Marker).
StrictTiming	Boolean	TRUE	When TRUE , MarkerTone uses proper MarkerTone intercharacter timing, which is a one-dot gap between Ident characters. When FALSE , Mark- erTone uses standard Morse code intercharacter tim- ing, which is a three-dot gap between Ident characters.
Wordrate1	uint8	1	Determines the rate at which the word is keyed when <i>IdentIndex</i> is 1.<i>Modifier:</i> 11

Name	Туре	Default Value	Description
Wordrate2	uint8	1	Determines the rate at which the word is keyed when <i>IdentIndex</i> is 2.<i>Modifier:</i> 10
Wordrate3	uint8	1	Determines the rate at which the word is keyed when <i>IdentIndex</i> is 3.<i>Modifier:</i> 18
Wordrate4	uint8	1	 Determines the rate at which the word is keyed when <i>IdentIndex</i> is 4. <i>Modifier:</i> 8
Wordrate5	uint8	1	Determines the rate at which the word is keyed when <i>IdentIndex</i> is 5.<i>Modifier:</i> 11
Wordrate6	uint8	1	Determines the rate at which the word is keyed when <i>IdentIndex</i> is 6.<i>Modifier:</i> 10
Wordrate7	uint8	1	Determines the rate at which the word is keyed when <i>IdentIndex</i> is 7.<i>Modifier:</i> 18
Wordrate8	uint8	1	Determines the rate at which the word is keyed when <i>IdentIndex</i> is 8 .

Table 276: MarkerTone control inputs

Table 277, "MarkerTone control outputs" below lists and describes **MarkerTone** control output variables:

Name	Туре	Default Value	Description
Active	Boolean	FALSE	When keyer is keying a dot or a dash, this goes TRUE , essentially mimicking the beep of the keyer.
Busy	Boolean	FALSE	When OutSignal is active audio, Busy is TRUE .

Table 278, "MarkerTone internal parameters" below lists and describes **MarkerTone** internal parameter variables:

Name	Туре	Default Value	Description
ldent1	ident	Т	The identifier the keyer plays when <i>IdentIndex</i> is 1 . A value of T plays a single dash in Morse code.
Ident2	ident	Α	The identifier the keyer plays when <i>IdentIndex</i> is 2 . A value of A plays a dot dash in Morse code.
ldent3	ident	Е	The identifier the keyer plays when <i>IdentIndex</i> is to 3 . A value of E plays a single dot in Morse code.
ldent4	ident	I	The identifier the keyer plays when <i>IdentIndex</i> is 4 . A value of I plays a dot dot in Morse code.
ldent5	ident	<edit></edit>	The identifier the keyer plays when <i>IdentIndex</i> is 5 ; useful if you want to create your own marker.
ldent6	ident	<edit></edit>	The identifier the keyer plays when <i>IdentIndex</i> is 6 ; useful if you want to create your own marker.
ldent7	ident	<edit></edit>	The identifier the keyer plays when <i>IdentIndex</i> is 7 ; useful if you want to create your own marker.
ldent8	ident	<edit></edit>	The identifier the keyer plays when <i>IdentIndex</i> is 8 ; useful if you want to create your own marker.

 Table 278: MarkerTone internal parameters

15.7 MorseKeyer

Summary: MorseKeyer creates a four-letter Morse code sequence.

Description: MorseKeyer translates four-letter words into Morse code. The component controls the word rate, interval, and the frequency (i.e., pitch) of the generated tone. In addition to the usual letters and numbers defined in Morse code, it also includes the characters * and - to represent individual dot and dash combinations.

Table 279, "MorseKeyer audio output" below lists and describes the **MorseKeyer** audio output variable:

Name	Туре	Default Value	Description
OutSignal	audio	N/A	Outputs keyed word when press-to-talk (PTT) control is enabled.

Table 279: MorseKeyer audio output

Table 280, "MorseKeyer control inputs" below lists and describes MorseKeyer control inp	out
variables:	

Name	Туре	Default Value	Description
Enable	Boolean	TRUE	When TRUE , it enables the MorseKeyer . When FALSE , the MorseKeyer is disabled.
Frequency	float32	1.0	Provides the frequency (i.e., pitch) of the Morse tone. Units are in Hertz.
Gain	float32	1.0	Scales the strength of the generated tone.
Ident	ident	N/A	The four-letter word converted into Morse code. <i>Ident</i> is a special variable type defined as four combined ASCII characters. HostIn drives <i>Ident</i> .
Interval	float32	1.0	Total cycle in seconds before the Ident message starts playing, including pause. To calculate this number, use the following formula:
			Word Rate Time + (Wordrate - Interval)
			The interval number must be larger than the word rate.
ILSPause	Boolean	FALSE	When FALSE , MorseKeyer uses normal Morse code inter-character timing, which is a three-dot gap between all Ident characters. When TRUE , MorseKeyer uses standard Morse code interword timing between first and second characters (i.e., a seven-dot gap). Inter-character timing for sub- sequent Ident characters use standard Morse code inter-character spacing (i.e., a three-dot gap).
Wordrate	uint8	1	Determines rate at which word is keyed.

Table 280: MorseKeyer control inputs

Table 281, "MorseKeyer control outputs" below lists and describes **MorseKeyer** control output variables:

Name	Туре	Default Value	Description
Active	Boolean	FALSE	TRUE when the keyer is keying dot or dash, mim- icking the keyer's beep.
Busy	Boolean	FALSE	Indicates if MorseKeyer actively produces audio.

Table 281: MorseKeyer control outputs

15.8 RCUbasic

Summary: RCUbasic pairs with Transceiver to model radios for the radio simulated environment.

Description: The most commonly set radio uses two components:

- Transceiver
- RCUbasic

The Radio Control Unit (RCU) basic requires a **commplan** fill to access radio modes, waveforms, default settings, etc. If the control inputs are set from an external source (e.g., host control), they override the default values in the fill. For example, **RCUbasic** has a loaded fill and is using Net 1, which defaults the frequency of the radio to 101 megahertz (MHz). This information is sent to the paired **Transceiver** that shares the same Transceiver ID as **RCUbasic**. For example, to use the net default with a new frequency of 105 MHz, set the RCUbasic component's frequency to 105 MHz. The new frequency overrides the net default, and **Transceiver** sets its frequency to 105 MHz.

In general, settings that relate to how the radio appears on the network are in **Transceiver**, and settings that controls the radio for simulation are placed in **RCUbasic**.

Table 282, "RCUbasic control inputs"	on the facing page lis	ts and describes RCUbasic con-
trol input variables:		

Name	Туре	Default Value	Description
CryptoKey	uint16	0	If two radios are encrypted, they must have matching crypto keys to communicate.
CryptoSys	uint16	0	Sets the radio's crypto type. Acceptable values include the following:
			 <i>0:</i> other <i>1:</i> KY-28 <i>2:</i> KY-58 <i>3:</i> NSVE <i>4:</i> WSVE <i>5:</i> SINCGARS ICOM
CodecType	uint16	0	When the radio mode is DIGITAL, this num- ber must match the receiver to transmitter.
Frequency	uint64	0	Current radio tune frequency in Hertz.
FreqHopHopSetWOD	uint16	0	Identifies the set of frequencies used in hop- ping pattern. Default of 0 = match all.

Name	Туре	Default Value	Description
FreqHopLockOutId	uint16	0	Identifies the set of frequencies excluded from hopping pattern. Default of 0 = match all.
FreqHopNetId	uint16	0	Identifies the frequency-hopping net ID. Fre- quency hopping radio must have non-zero Net ID to be considered actively hopping.
FreqHopSyncTOD	uint32	0	Identifies the frequency-hopping time of day. A default of 0 = match all.
FreqHopSystem	uint16	0	Not used. ASTi recommends setting of 0.
FreqHopTranSecKey	uint16	0	Identifies the frequency-hopping trans- mission security key that generates hopping patterns. Default of 0 = match all.
NetIndicate	uint32	1	Selects net from the commplan fill. Net defines core radio parameters, including frequency, Tx frequency, waveform, crypto, and frequency hopping. Set net parameters in the commplan .
TxFrequency	uint64	0	Transmitter frequency of Transceiver in Hz. Only use if Tx frequency differs from Rx frequency.
TxPower	float32	0.0	Transmit power for radio in Watts.

Table 282: RCUbasic control inputs

Table 283, "RCUbasic control outputs" below lists and describes **RCUbasic** control output variables:

Name	Туре	Default Value	Description
FillName	string	<edit></edit>	Reports fill contents. Typically not connected to outputs.
NetIndicate	uint32	0	Reports <i>Transceiverld</i> contents. Typically not connected to output.

Table 283	: RCUbasic	control	outputs
-----------	------------	---------	---------

Table 284, "RCUbasic internal parameters" below lists and describes **RCUbasic** internal parameter variables:

Name	Туре	Default Value	Description
Fill	fill	<select></select>	IDs the commplan fill to use with Transceiver . To insert the commplan fill, double-click Value . A radio needs a fill to operate.
Transceiverld	id	UNASSIGNED	Tells RCUbasic which Transceiver to control. The Transceiver's <i>TransceiverId</i> must match.

Table 284: RCUbasic internal parameters

15.9 Receiver

Summary: Receiver communicates with Transceiver to force receive capability.

Description: Receiver is an RCU in the Radio group. It communicates with Transceiver to force Rx capability only. It's a subset of the features and controls in **RCUbasic**.

Receiver charges fewer credits than **RCUbasic** and other Radio Control Units (RCUs), but it also provides less functionality. The component replicates guard receivers and navigational aids, such as an automatic direction finder (ADF) receiver or a Tactical Air Navigation (TACAN) receiver. For more information about RCUs and **Transceiver**, go to Section 15.8, "RCUbasic" on page 238.

Table 285, "Receiver control inputs" on the facing page describes **Receiver** control input variables:

Name	Туре	Default Value	Description
CryptoKey	uint16	0	If two radios use encryption, they must have matching crypto keys for the crypto modes; must match for proper radio tuning.
Frequency	uint64	0	The current radio tune frequency in Hz.
FreqHopNetId	uint16	0	Identifies the frequency-hopping network.
FreqHopSyncTOD	uint32	0	Identifies the time of day used in frequency hopping.
FreqHopTranSecKey	uint16	0	Identifies the transmission security key used to generate hopping patterns.
FreqHopHopSetWOD	uint16	0	Identifies the set of frequencies used to gen- erate hopping patterns.

Name	Туре	Default Value	Description
FreqHopLockOutId	uint16	0	Identifies the set of frequencies that are excluded from hopping pattern.
Net	uint32	1	Net defines the core radio features, including frequency, Tx frequency, waveform, crypto, and frequency hopping. <i>Net</i> parameters are set in the Comm Plan .
CryptoSys	uint16	0	Sets the radio's crypto type. Acceptable val- ues include the following: • 0: other • 1: KY-28 • 2: KY-58 • 3: NSVE • 4: WSVE • 5: SINCGARS ICOM

Table 285: Receiver control inputs

Table 286, "Receiver internal parameters" below lists and describes **Receiver** internal parameter variables:

Name	Туре	Default Value	Description
Fill	fill	<select></select>	To insert the commplan fill, double-click in Value .
Transceiverld	id	UNASSIGNED	<i>TransceiverId</i> tells the RCU which Transceiver it should control.

Table 286: Receiver internal parameters

15.10 Relay

Summary: Relay links any radio pairs from a bank of eight radios.

Description: Relay connects up to eight **Transceivers** together to form radio relays. A radio relay takes all received audio from a radio and retransmits from another radio. Relay allows you to make up to four pairs of relays across eight radios. In the most basic case, link the received audio from a transceiver to *ReceiveAudio1* of Relay. *RadioSelector1* sets which radio receives the audio, where 2 = TransmitAudio2, 3 = TransmitAudio3, etc.

In the example below, *Transceiver2* and *Transceiver3* are a relay pair, and *Transceiver1* and *Transceiver4* are also a pair. As in the real world, radios in **Relay** mode have different frequencies.

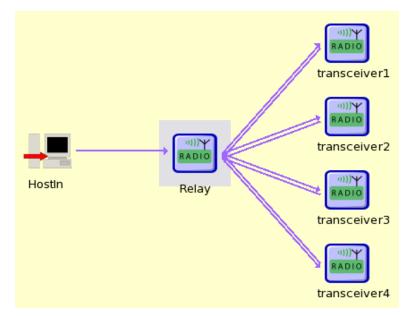


Figure 46: Basic Relay model example

	relay_model:Hostin (Root) - ACE IO Packet Editor												
Hostin [N/A](change) 🔯 Controller Import ICD 🗸 Enable Testing 🖋 🗆 Big endian													
Packe	t Notes												
	🕞 🤡 🛛 Align C	Offset	Clear	Testmode	Add to	Connector	Use Init V	/alue: N	ever	\$	Timeou	ut (s) 1.00	A
ld.	Name		Offset	MsgLen	Туре	Init. Value	Function	Y	z	Rscale	Test N	Test Value	Used by
1	radio1_linked_to	8	0	0	uint8	0	Select	0.00000.0	0.000000	0.000000	on	0	Relay/RadioSelector1
2	radio2_linked_to	0	0	0	uint8	0	Select	0.000000	0.000000	0.000000	on	3	Relay/RadioSelector2
3	radio3_linked_to	8	0	0	uint8	0	Select	0.000000	0.000000	0.000000	on	2	Relay/RadioSelector3
4	radio4_linked_to	0	0	0	uint8	0	Select	0.000000	0.000000	0.000000	on	0	Relay/RadioSelector4
4													•

Figure 47: Relay host control

Data	a Links	Schematic	nfo View/Edit	Descripti	on						
							🖌 🛛 Filte	er View		Full View	
F	rom		Variable	Туре	Value	Ор	Modifier	Result	То		
	lostin/ra	dio1_linked_to	RadioSelecto	or1 uint8							
H	lostin/ra	dio2_linked_to	RadioSelecto	or2 uint8	3	*	1	3	3		
H	lostin/ra	dio3_linked_to	RadioSelecto	or3 uint8	2	*	1	2	2		
H	lostin/ra	dio4_linked_to	RadioSelecto	or4 uint8	0	*	1	0	1		
Þ			RadioSelect	or5 uint8	0	+	0	0			
Þ			RadioSelect	or6 uint8	0	+	0	0			
Þ			RadioSelect	or7 uint8	0	+	0	0			
Þ			RadioSelect	or8 uint8	0	+	0	0			
⊳ t	ransceiv	er1/RxAudio	ReceiveAudi	ol audio							
⊳ t	ransceiv	er2/RxAudio	ReceiveAudi	o2 audio							
⊳ t	ransceiv	er3/RxAudio	ReceiveAudi	o3 audio							
⊳t	ransceiv	er4/RxAudio	ReceiveAudi	o4 audio							

Figure 48: Relay component

Table 287, "Relay audio inputs and outputs" below lists and describes **Relay** audio input and output variables:

Name	Туре	Default Value	Description
Audio Inputs			
ReceiveAudio1– ReceiveAudio8	audio	N/A	The <i>ReceiveAudio</i> from the selected Transceiver routed into Relay .
Audio Outputs			
TransmitAudio 1– TransmitAudio8	audio	N/A	A link to the transmit audio input of the selected Transceiver . Audio is routed from the <i>ReceiveAu-</i> <i>dio</i> lines based on the <i>RadioSelectors</i> .

Table 287: Relay audio inputs and outputs

Name	Туре	Default Value	Description
RadioSelector1	uint8	0	<i>RadioSelector1</i> chooses which transmit audio stream <i>ReceiveAudio1</i> routes to. A value of 0 means <i>ReceiveAudio1</i> does not relay to any other radio.
RadioSelector2	uint8	0	<i>RadioSelector2</i> chooses which transmit audio stream <i>ReceiveAudio2</i> routes to. A value of 0 means <i>ReceiveAudio2</i> is not relayed to any other radio.
RadioSelector3	uint8	0	<i>RadioSelector3</i> chooses which transmit audio stream <i>ReceiveAudio3</i> routes to. A value of 0 means <i>ReceiveAudio3</i> does not relay to any other radio.
RadioSelector4	uint8	0	<i>RadioSelector4</i> chooses which transmit audio stream <i>ReceiveAudio4</i> routes to. A value of 0 means <i>ReceiveAudio4</i> does not relay to any other radio.
RadioSelector5	uint8	0	<i>RadioSelector5</i> chooses which transmit audio stream <i>ReceiveAudio5</i> routes to. A value of 0 means <i>ReceiveAudio5</i> does not relay to any other radio.
RadioSelector6	uint8	0	<i>RadioSelector6</i> chooses which transmit audio stream <i>ReceiveAudio6</i> routes to. A value of 0 means <i>ReceiveAudio6</i> does not relay to any other radio.
RadioSelector7	uint8	0	<i>RadioSelector</i> 7 chooses which transmit audio stream <i>ReceiveAudio</i> 7 routes to. A value of 0 means <i>ReceiveAudio</i> 7 does not relay to any other radio.
RadioSelector8	uint8	0	<i>RadioSelector8</i> chooses which transmit audio stream <i>ReceiveAudio8</i> routes to. A value of 0 means <i>ReceiveAudio8</i> does not relay to any other radio.

Table 288, "Relay control inputs" below lists and describes Relay control input variables:

 Table 288: Relay control inputs

15.11 Satellite

Summary: **Satellite** is a simulated satellite that handles uplink/downlink relay of signals transmitted from a simulated radio in SATCOM mode, including simulation of mode-dependent delays.

Description: Satellite represents a simulated satellite and can be set to relay uplink signals from radios set in SATCOM mode. Realistic simulation of Satellite parameters, including delays based on SATCOM sub-modes, world position, uplink and downlink bands are included. Add multiple Satellites to a model to simulate multiple, independent satellites.

SATCOM submodes include the following:

- 5k Dedicated
- 5k DASA
- 5k DAMA
- 25k Dedicated
- 25k DC DASA
- 25k AC DAMA
- 25k DC DAMA

Satellite can also include propagation effects, such as smooth Earth occulting and terrain occulting through use of a terrain server:

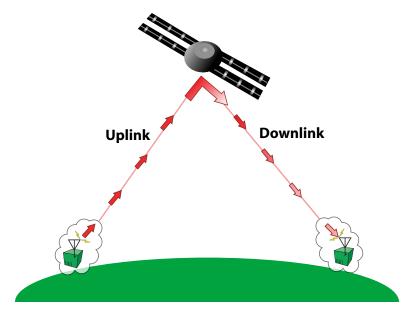


Table 289, "Satellite control inputs" on the facing page lists and describes **Satellite** control input variables:

Name	Туре	Default Value	Description
UplinkFrequency	uint64	0	Base frequency of Satellite uplink frequency band in Hertz.
DownlinkFrequency	uint64	0	Base frequency of Satellite downlink fre- quency band in Hertz.
Passband	uint64	0	Defines the frequency range of Satellite uplink and downlink bands in hertz.
TxPower	float32	1.0	The transmit power for Satellite downlink transmitter in Watts.
Channels	uint32	1	Number of simultaneous channels that can be supported by Satellite .
FixedDelay	uint32	0	Overrides mode-based delays and forces a fixed delay value. Specified in milliseconds.
Delay5k	uint32	0	Delay applied between when Satellite receives an uplink signal, and it transmits the downlink signal when in <i>SATCOM5k</i> mode. Specified in milliseconds.
Delay5kDASA	uint32	0	Delay applied between when Satellite receives an uplink signal and when it transmits the downlink signal when in <i>SATCOM5kDASA</i> mode. Specified in milliseconds.
Delay5kDAMA	uint32	0	Delay applied from when Satellite receives an uplink signal and when it transmits the down-link signal when in <i>SATCOM5kDAMA</i> mode. Specified in milliseconds.
Delay25k	uint32	0	Delay applied from when Satellite receives an uplink signal and when it transmits the down- link signal when in <i>SATCOM25k</i> mode. Spe- cified in milliseconds.
Delay25kDCDASA	uint32	0	Delay applied from when Satellite receives an uplink signal and when it transmits the down-link signal when in <i>SATCOM25kDCDASA</i> mode. Specified in milliseconds.

Name	Туре	Default Value	Description
Delay25kACDAMA	uint32	0	Delay applied from when the Satellite receives an uplink signal and when it transmits the downlink signal when in <i>SATCOM25kACDAMA</i> mode. Specified in mil- liseconds.
Delay25kDCDAMA	uint32	0	Delay applied from when Satellite receives an uplink signal and when it transmits the down-link signal when in <i>SATCOM25kDCDAMA</i> mode. Specified in milliseconds.
DomainNameIn	string	N/A	Allows a host platform to set the <i>DomainName</i> string remotely. This input is typically used in conjunction with the Control > NumToString .
ProtocolldIn	string	N/A	Allows a host platform to set the <i>Protocolld</i> string remotely. This input is typically used in conjunction with NumToString .
ForceCenter OfEarth	Boolean	FALSE	A manual override that places Satellite at 0, 0, 0 geocentric world position. This variable disables all propagation effects on transmit or receive.
TerrainEnable	Boolean	FALSE	When TRUE , allows input terrain server to process line-of-sight transmissions.

Table 289: Satellite control inputs

Table 290, "Satellite internal parameters" on the facing page lists and describes **Satellite** internal parameter variables:

Name	Туре	Default Value	Description
SatelliteName	string	<edit></edit>	Name of the component.
DomainName	string	<edit></edit>	The <i>DomainName</i> is part of the ASTiNet prop- erty set and defines a common com- munications environment. All radios in the same domain can communicate. Radios in sep- arate domains can never communicate. It is analogous to a Distributed Interactive Sim- ulation (DIS) exercise ID or a high-level archi- tecture (HLA) Federation name. When defined as an ASCII string Transceiver is an ASTiNet radio. When that string matches a defined DIS domain at the project level, it maps the domain name to a DIS exercise ID.
			To define a DIS exercise ID, enter DIS : <i>N</i> , where <i>N</i> =1–255. For example, "DIS:1" puts the radio in DIS exercise ID #1.
			In Satellite , this action specifies the domain where the satellite are active. Leaving this vari- able blank causes it to act as a wild card. Satel- lite is active in all domains.

Name	Туре	Default Value	Description
ProtocolID	string	<edit></edit>	Optional configuration for when you have a non-ASTiNet radios. DIS is currently the only supported protocol. The syntax for setting up a DIS radio is the string format of DIS: <i>site.applic-</i> <i>ation.entity.radio</i> , DIS: <i>entity.radio</i> , or DIS: <i>radio</i> . If the site and application are excluded from the string, the radio environment assigns the default site and app from the DIS file in Domain Editor . If entity is excluded, the radio environment assigns a random/unique number entity ID for the radio. This variable can also be set in the radio helper. It must be unique within the DIS network. For example: DIS:100.100.1.1 sets: Site=100, App=100, Entity=1, and Radio=1
			In Satellite , <i>ProtocollD</i> affects the DIS ID of the temporary transmitters setup to retransmit the signal.
WorldPositionBus	id	UNASSIGNED	Optional configuration that allows you to assign a Satellite to a world position bus. If undefined, Satellite defaults to X,Y,Z = 0,0,0. Altern- atively, if an entity exists on the DIS network that matches the <i>Site.Application. Entity ID</i> within Satellite <i>ProtocolID</i> , Satellite inherits that entity's world position information. When a bus name is defined, Satellite is located (X,Y,Z) based on Platform , which is tied to the same bus name used in conjunction with Plat- form/ GeocentricWorldPosition or Geo- deticWorldPosition .

Table 290: Satellite internal parameters

15.12 Transceiver

Summary: Transceiver works in conjunction with Radio Control Unit (RCU) to create a simulated radio.

Description: Transceiver models radio transmission and radio reception. Used in conjunction with RCU, Intercom Control Unit (ICU), Receiver, or Transmitter, it forms the basis of a Radio, Network Intercom, Receiver, or Transmitter respectively.

Some of the core features of the Transceiver include the following:

- Host control of core radio parameters
- Modulation matching, which includes amplitude modulation (AM), frequency modulation (FM), upper sideband (USB), lower sideband (LSB), etc.
- Radio Frequency (RF) propagation modeling based on world position, frequency, etc.
- Crypto state and sound modeling
- Frequency-hopping modeling
- Jamming support
- Squelch control
- Terrain support, in conjunction with an external terrain server
- Antenna Gain, Cable Loss, RXTuneTone and other advanced radio parameters
- Audio and Tactical Data Link support
- Multiprotocol support including local, ASTiNet, Distributed Interactive Simulation (DIS) and high-level architecture (HLA)

Transceiver provides a generic, high-level radio simulation, which includes transmit and receive operations, frequency-tuning effects, AM and FM modulation modes, signal-strength variation due to range, transmit power, antenna and receiver gain, RF and internal noise, and propagation path loss, sidetone signal return, and support for crypto and frequency hop behaviors, and more.

At the simplest level, **Transceiver** provides a simulation of the interface between the signal and data flow within a radio, and the simulated radio frequency environment. Just as in the real world, the signals passed between a real **Transceiver** and the remainder of the radio subsystem provide information to and from **Transceiver**, and include the transmit and receive audio signals (i.e., voice or tones), transmit and receive data message signals, including the following:

- Link-16
- Interval data messages (IDM)
- Aircraft Communications Addressing and Reporting System (ACARS)
- Control signals that determine the behavior of the **Transceiver** (e.g., tuned frequency, modulation mode, bandwidth)

Transceiver has two bidirectional information interfaces and a single, one-way control interface. One of the bidirectional information interfaces operates internally within the simulated radio and/or vehicle base-band. The other bidirectional interface operates in the RF bands and provides wireless transmission and reception. The control interface determines the translation between the base-band and RF environments.

Transceiver must be used with an **RCU** object to form an operational radio **RCU** provides the greater portion of the control interface data values. Applicable **RCU** subclass objects that may be used with the **Transceiver** include the following components:

- RCU
- ICU
- Transmitter
- Receiver

The type of **RCU** determines the available **Transceiver's** capabilities. For example, selection of a receiver **RCU** object limits the **Transceiver's** operation to the reception of RF-originated signals.

The **Transceiver** can implement various fidelity levels of RF modeling from simple frequency matching to full-fidelity simulation of specific radio types, including propagation and ranging, bandwidth overlap, antenna gain, etc. Ranging behavior requires that each radio has a world position describing the location of the radio on or above the Earth's surface. If a radio is set to operate using the DIS networking protocol, another option available is to attach a radio to an externally simulated entity using **Entity Attach**. Once attached, the **Transceiver** position is a slave to the selected entity, and all range calculations are based on the supplied entity position.

The received signal strength is computed for all in-tune radios based on the power of the transmitter, the antenna gains of **Transmitter** and **Receiver**, and the relative world positions. If the terrain interface is installed, the gain factor for the in-tune radios is factored in the calculator. If frequency hopping or encryption is enabled, **Transceiver** compares the parameters of the **Transmitter** and **Receiver** to see if the audio is received.

Note: In frequency-hopping mode, frequency is ignored. The frequency is implied in the selected Net ID hopset.

If multiple **Transmitters** are broadcasting on the same frequency, **Transceiver** typically does one of two things. For AM signals, the received RF power is combined, and the received audio is a sum of the transmitted signals in proportion to their signal strength. For FM signals, only the strongest received signal is included.

Once the received power is determined, the RF signal-to-noise (SNR) is calculated. The noise level is determined by thermal noise, internal radio noise, and other parameters, which are set in **Transceiver**. The RF SNR is then compared to the squelch level. If the ratio is less than the squelch level, the signal is not received. Setting the squelch to zero disables the squelch.

After determining that the signal is received, the signal power and noise power are affected by automatic gain control (AGC). Additionally, when squelch is off, the maximum AGC determines the background noise when **Transceiver** doesn't receive a signal. The received audio is routed out of the component locally and/or onto the **IntercomBusService**, where an operator can hear it, typically through a communications panel component.

Transceiver can transmit as well as receive. When the radio transmits, the reception is cut off, assuming half-duplex operation.

To support crypto, simulation radios use a library of crypto tones (i.e., sound files) with each **Transceiver**. This library greatly simplifies the encrypted radio simulation by automatically playing tones (e.g., preamble, postamble, or mismatch tone) at the appropriate times during a secure radio transmission or reception.

Radio jamming occurs when a receiving radio operating in FM is blocked by a strong transmission, most often used a mismatched modulation mode (e.g., **Pulse**), causing any desired signal to be masked by the unwanted jammer. This capability is supported in **Transceiver**.

Receiver automatically determines if it is jammed. The audio associated with **Receiver** being jammed is implemented through **Transceiver** using the sound file library system to organize the jamming sounds. Each **Transceiver** can point at a particular jamming library and jamming group. The sound file indexes populated within the sound library or group map to possible modes of **Receiver**.

The receiving radio automatically chooses which sound file to play when it is jammed. The sound file (i.e., index) chosen is determined by the RECEIVER mode. Table 291, "Receiver mode sounds" below specifies which sound index is played based on the mode:

Receiver Mode	Sound File Index Played
FM	2
AM	3
SATCOM	4
CW	8
USB	9
LSB	10
Pulse	11
SSBF	13

Table 291: Receiver mode sounds

If the terrain interface is set, the radio environment determines in-tune **Transmitter** and **Receiver** pairs and generates data packets containing **Transmitter Receiver** world positions. The host computing system and a suitable terrain database may process these packets to determine accurate line-of-sight terrain obscuration checks in addition to the range calculations. Without the terrain package, ranging is limited by a calculation based upon a WGS-84 model of the Earth's curvature.

Note: For frequencies between 1 and 100,000, no background noise or signal attenuation effects are simulated. These frequencies provide a clear channel of communication, regardless of transmission power, world position, etc. The frequencies are typically reserved for network intercom communications (i.e., INTERCOM mode).

Note: Transceiver defaults to a world position of geocentric X, Y, Z = 0, 0, 0 (i.e., the center of the Earth). At this position, a radio receives any radios using the same frequency without any signal loss or occulting. This feature can model a radio that monitors a particular radio band, without regard to position or transmit power.

Table 292, "Transceiver audio inputs" below lists and describes **Transceiver** audio input variables:

Name	Туре	Default Value	Description
ExternalNoise	audio	N/A	Attach an input signal to replace the internal NoiseSource . Overrides the white noise generator if a signal is attached and active.
RxTuneTone	audio	N/A	Local audio connection mixed into the receive audio path of the radio.
TxAudio	audio	N/A	Local audio connection to Transceiver transmit audio stream.

Table 292: Transceiver audio inputs

Table 293, "Transceiver audio outputs" below lists and describes **Transceiver** audio output variables:

Name	Туре	Default Value	Description
RxAudio	audio	N/A	The receiving audio Transceiver picks up from in- tune transmitting radios).
TxCryptoAudio	audio	N/A	The audio the cryptotone player generates for trans- mit states only.

Table 293: Transceiver audio outputs

Table 294, "Transceiver control inputs" on page 256 lists and describes **Transceiver** control input variables:

Name	Туре	Default Value	Description
AntennaGain	float32	1.0	The linear antenna gain applied to the radio receive signal.
Cableloss	float32	1.0	The loss factor representing the antenna cable; a value of 1.0 represents no loss.
BFOGain	float32	1.0	The gain associated with the beat frequency oscillator (BFO) audio.
BFOFrequency	float32	0.0	BFO frequency in Transceiver . The BFO has a tone strength that is proportional to the received carrier strength, generally used for detecting the Morse code keying present on a continuous wave beacon.
CryptoGroup	playsound_ group	1	Allows for host control between different crypto groups in the sound library. For example, change from a KY-28 to a KY-58.
CryptoGain	float32	1.0	The gain level of the crypto sound.
CryptoEnable	Boolean	TRUE	Disables crypto even when crypto parameters are enabled in the Transceiver's associated RCU .
CryptoOnly	Boolean	FALSE	When TRUE and if the radio is in crypto mode (i.e., system and key are both not zero), the radio does not receive clear transmissions and or play <i>RX_Clear Playsound</i> . If TRUE and the radio is in CLEAR mode (i.e., system or key are 0), the radio receives clear trans- missions.
DomainNameIn	string	N/A	Allows a host platform to set the <i>DomainName</i> string remotely. This input is typically used with NumToString .
ForceCenterOfEarth	Boolean	FALSE	A manual override places Transceiver at 0, 0, 0 geocentric world position. When TRUE , the radio is located at the center of the Earth (0, 0, 0). Set to the center of the Earth to disable propagation effects.

Name	Туре	Default Value	Description
InterferenceLibrary	playsound_ library	<select></select>	The Playsound library with Playsound that plays when the radio senses a jammed. For more information about jamming, go to Section 15.12, "Transceiver" on page 249.
InterferenceGroup	playsound_ group	1	The Playsound group with Playsound that plays when the radio senses a jam.
InterferenceGain	float32	1.0	The gain applied to jamming audio.
NoiseGain	float32	0.1	Gain associated with the internal Transceiver noise.
PowerIn	Boolean	TRUE	Enable or disable power for Transceiver . If not connected to From , the default value is TRUE .
Protocolld	string	N/A	Allows a host platform to set the <i>Protocolld</i> string remotely. This input is typically works with NumToString .
ReceiveGain	float32	1.0	The gain applied to the received audio. Equivalent to a volume knob.
RxALCEnable	Boolean	FALSE	Enables auto-level control (ALC) on Trans- ceiver's received signal. Loud signals reduce in volume and quiet signals boost. Other ASTi-networked radios receive at a consistent volume, regardless of which system the radios are using.
RxDataThreshold	float32	0.200	Equivalent to a squelch level but for data reception.
RxEnable	Boolean	TRUE	If TRUE , then receive is enabled for the Transceiver .
SideFxEnable	Boolean	TRUE	If TRUE , then any applied voicing effects are heard in the sidetone returned from this Trans- ceiver . Enable voicing effects in the com- mplan waveform.

Name	Туре	Default Value	Description
SquelchLevel	float32	0.200	When the received signal-to-noise ratio (SNR) is less than the squelch value, the gain is 0, suppressing the background noise. To disable the squelch set the level to zero. To calculate the squelch level in dB, multiply the squelch result displayed in the component by 20. This is useful when you want to compare the squelch level to signal level in dB.
SquelchTail	uint32	75	The duration of the squelch tail in mil- liseconds.
TransmitAudioGain	float32	1.0	Gain applied to the Radio Bridge's transmit sig- nal before it enters the radio environment.
TxALCEnable	Boolean	FALSE	Enables the ALC on the Transceiver's trans- mit signal. This behavior attempts to maintain a consistent and specified audio volume, redu- cing volume in loud signals and boosting the volume for quiet signals. As a result, other ASTi-networked radio systems hear this radio at a consistent volume.
TxEnable	Boolean	TRUE	If TRUE , then transmit is enabled for Trans - ceiver .

Table 294: Transceiver control inputs

Table 295, "Transceiver control outputs" on page 258 lists and describes **Transceiver** control output variables:

Name	Туре	Default Value	Description
Jammed	Boolean	FALSE	Indicates if Transceiver is jammed.
Range	float32	0.0	The distance to the Transmitter cur- rently being received from in meters.
RxActive	Boolean	FALSE	Indicates if Transceiver is receiving.
RxAudioActive	Boolean	FALSE	When TRUE , the Transceiver receive output is non-zero. TRUE if squelch is broken or audio is received.
RxCrypt	Boolean	FALSE	TRUE when the radio is actively receiving a secure transmission.

Name	Туре	Default Value	Description
RxCryptoSoundIdx	uint16	0	When no Rx_Preamble sound file is playing, this number is 0. When any Rx_Preamble is playing, this number reflects the sound index as configured in the sound library. This variable appears only in Full View .
RxDataDropped	int32	0	The number of data packets that the radio detected coming from an in-tune transmitting radio when <i>RxDataThresholdMet</i> is FALSE and is not forwarded to the local host.
RxDataForwarded	int32	0	The number of data packets suc- cessfully received from an in-tune, transmitting radio while <i>RxDataThresholdMet</i> is TRUE and is forwarded to the local host.
RxDataThresholdMet	Boolean	FALSE	TRUE when Receiver is in tune with a Transmitter and the SNR in dB of the path from that Transmitter to the Receiver is at or above the threshold set using the <i>RxDataThreshold</i> value.
RxFreq	uint64	0	The Transceiver receive frequency.
RxPathFactor	float32	0.0	The pathloss factor associated with the transmission path; could come from an external terrain server or path- loss server, internal calculations, or path factor. A value of 1.0 represents no loss.
RxPower	float32	-270.0	Indicates the receive power in dBm.
RxTxLocationX	float64	0.0	When the radio receives, it populates the transmitters location. This is the X position in a geocentric coordinate sys- tem of the radio that the Transceiver is currently receiving from.

Name	Туре	Default Value	Description
RxTxLocationY	float64	0.0	When the radio receives, it populates the transmitters location. This is the Y position in a geocentric coordinate sys- tem of the radio that the Transceiver is currently receiving from.
RxTxLocationZ	float64	0.0	When the radio receives, it populates the Transmitter's location. This is the Z position in a geocentric coordinate system of the radio that Transceiver is currently receiving from.
<i>RxVoiceTransmissionActive</i>	Boolean	FALSE	When TRUE , Transceiver is receiv- ing audio from another radio.
SNR	float32	-270.0	The signal-to-noise ratio of the received signal.
TxActive	Boolean	FALSE	Indicates whether Transceiver is transmitting.
TxVoice	Boolean	FALSE	Indicates when Transceiver is trans- mitting audio.
TxTDL	Boolean	FALSE	Indicates when Transceiver is trans- mitting Tactical Data Link (TDL).
TxCrypt	Boolean	FALSE	Indicates when Transceiver is in crypto mode and actively transmitting.
TxCryptoSoundIdx	uint16	0	When no Tx_Preamble sound file is playing, this number is 0. When a Tx_ Preamble sound file is playing, this number reflects the sound index as configured in the sound library. This variable only appears in Full View .
TxFreq	uint64	0	Indicates Transceiver transmit fre- quency.

Table 295: Transceiver control outputs

Table 296, "Transceiver internal parameters" on page 261 lists and describes **Transceiver** internal parameter variables:

Name	Туре	Default Value	Description
DomainName	string	<edit></edit>	(Required) Part of the ASTiNet property set that defines a common comms environment. All Transceivers in the same domain can talk. It's similar to a DIS Exercise ID or an HLA Federation name. When an ASCII string, Transceiver is natively an ASTiNet radio. When that string matches a defined DIS domain in a project, it maps the <i>DomainName</i> to a DIS exercise ID. To define a DIS exercise ID, enter DIS : <i>N</i> ,
			where <i>N</i> =1–255. For example, DIS:1 puts Transceiver in DIS Exercise ID 1. Ensure another DIS domain is not already using the exercise ID.
PowerBus	id	UNASSIGNED	Connects to <i>PowerService</i> to receive power instead of using a control.
Protocolld	string	<edit></edit>	Turns a radio into a DIS radio by setting the DIS identifiers (e.g., Host ID, Radio ID). Marking Field considers the radio "local" and unpublished on the network.
			 DIS:#.#.#.#: sets the Site, Application, Entity, and Radio IDs DIS:#.#: sets the Entity and Radio ID DIS:#: sets the Radio ID DIS: sets all four IDs automatically LCL: sets the radio as local and not published on the network.
			Blank identifiers generate automatically. Site and Application ID are the last two octets of the DIS IP address. Entity and Radio IDs are random. Append the above examples with a colon and Marking Field .
			For example, DIS:100.3:RedForce1 sets Entity ID to 100, Radio ID to 3, and Mark- ing Field to RedForce1. The IP address sets Site ID and Application ID.

Name	Туре	Default Value	Description
RadioBus	id	UNASSIGNED	Assigns Transceiver to Inter- comBusService . This variable is most com- monly used with CommPanel , which also uses IntercomBusService . Inter- comBusService allows components con- nected to the bus to pass around input audio, sidetone audio, and output audio.
RadioName	string	<edit></edit>	The radio name that describes what Trans- ceiver is modeling (e.g., UHF_Radio1). <i>Important: This parameter is required.</i>
RxState	CryptoStateRx	RxCryptoOff	This reports the current crypto receive state. Possible states include:
			 RxCryptoOff RxCryptoPreamble1 RxCryptoPreamble2 RxCryptoPostAmble RxCryptoClear RxCryptoMatch RxCryptoMismatch RxCryptoMismatchPreamble
			Each one corresponds to a different sound file played from the crypto sound library. Crypto receive states include the following:
			 0 // play no sound 1 // play match preamble 1 2 // play match preamble 2 3 // play match post amble 4 // play clear tone 5 // play match tone 6 // play mismatch tone 7 // play mismatch tone
Transceiverld	id	UNASSIGNED	The connection to the radio control service. This bus defines the connection between the Transceiver and its RCU/ICU .
			Important: This parameter is required.

Name	Туре	Default Value	Description
TxState	CryptoStateTx	TxCryptoOff	Reports the current crypto transmit state. Possible states include the following:
			 TxCryptoOff TxCryptoPreamble1 TxCryptoPreamble2 TxCryptoPostAmble TxCryptoClear TxCryptoCrypt
			Each state corresponds to a different sound file in the crypto sound library. Crypto trans- mit states include following:
			 0 // play no sound 11 // play crypto preamble 1 12 // play crypto preamble 2 13 // play crypto post amble 14 // play clear tone 15 // play crypto tone
WorldPositionBus	id	UNASSIGNED	<i>(Optional)</i> Assigns Transceiver to a world position bus. If undefined, Transceiver defaults to X,Y,Z = 0,0,0. Alternatively if an entity exists on the DIS network that matches <i>Site.App.Entity ID</i> within the <i>Pro-</i> <i>tocolId</i> variable of Transceiver , Trans- ceiver inherits that entity's world position information. When a bus name is defined, Transceiver is located (X,Y,Z) based on Platform , which is tied to the same bus name used with Platform/Geo- centricWorldPosition .

Table 296: Transceiver internal parameters

Table 297, "Transceiver internal display variables" below lists and describes **Transceiver** internal display variables:

Name	Туре	Default Value	Description
Mode	TunerMode	None	Displays the current Transceiver tuner mode (e.g., AM, FM, USB, LSB, etc.).
PowerState	Boolean	TRUE	Displays the power state of the Transceiver .
RxFrequency	uint64	0	Displays the current Transceiver receiver frequency.
TxFrequency	uint64	0	Displays the current Transceiver transmitter fre- quency.

Table 297: Transceiver internal display variables

15.13 Transmitter

Summary: Transmitter creates a transmit-only radio.

Description: Transmitter is a Radio Control Unit (RCU) included in the Radio group. It communicates with Transceiver, forcing transmit capability only. It is a subset of the features and controls located in RCUbasic.

The benefit of using **Transmitter** over **RCUbasic** or other all-purpose RCUs is that it charges a reduced number of credits for the reduced functionality. As a result, the component is useful for replicating navigational aids, such as very high frequency (VHF) Omnidirectional range (VOR) or nondirectional beacon (NDB) **Transmitters**.

For more information about using the **RCU** and **Transceiver**, go to Section 15.8, "RCU-basic" on page 238.

Table 298, "Transmitter control inputs" on the facing page lists and describes **Transmitter** control input variables:

Name	Туре	Default Value	Description
CryptoKey	uint16	0	If two radios are using encryption then they must have matching cryptokeys for the crypto modes. This variable must match for proper radio tuning.
FreqHopNetID	uint16	0	Identifies the frequency-hopping net ID. A frequency-hopping radio must have a non-zero net ID to actively hop.

Name	Туре	Default Value	Description
FreqHopSyncTOD	uint32	0	Identifies the time of day used in frequency hopping.
FreqHopTranSecKey	uint16	0	Identifies the transmission security key used to generate hopping patterns.
FreqHopHopSetWOD	uint16	0	Identifies the set of frequencies used in hopping patterns.
FreqHopLockOutId	uint16	0	Identifies the set of frequencies excluded from hopping patterns.
Frequency	uint64	0	The current transmitter tune frequency in Hz.
Net	uint32	1	 Defines core radio features, including the following: Frequency Transmit frequency Waveform Crypto Frequency hopping Net parameters in commplan.
TxPower	float32	1.0	Sets the transmit power for the Transmitter .

Table 298: Transmitter control inputs

Table 299, "Transmitter internal parameters" below lists and describes **Transmitter** internal parameter variables:

Name	Туре	Default Value	Description
Fill	fill	<select></select>	Insert the fill created in commplan by double-click- ing in Value .
TransceiverID	id	UNASSIGNED	Tells Transmitter which Transceiver it should con- trol.

 Table 299: Transmitter internal parameters

15.14 VORTAC_Controller

Summary: VORTAC_Controller is designed to control embedded identifier tone elements to simulate very high frequency (VHF) omnidirectional range (VOR) and Tactical Air Navigation (TACAN) radios.

Description: VORTAC_Controller handles the timing of the VOR and TACAN tones to prevent overlap. Seven components are needed to implement a complete VORTAC simulation in a model. The TACAN and VOR radios each consist of a **Transceiver**, **RCU**, and **MorseKeyer**. Both **MorseKeyers** are driven by one **VORTAC_Controller**. **VORTAC_Controller**. **VORTAC_Controller** to *Enable* of **VOR** and **TACAN MorseKeyers** to keep proper timing of the Morse code transmission.

MorseKeyer reports busy to **VORTAC_Controller** to ensure accurate timing of the Morse code transmissions. **MorseKeyer's** *Busy* variable must be connected to *VOR_Busy* and *TACAN Busy* in **VORTAC_Controller**.

Note: In some versions of Studio, VOR_Busy and TACAN_Busy are only visible in *Full View*.

Figure 49, "VORTAC_Controller data flow" below shows the **VORTAC_Controller's** data flow:

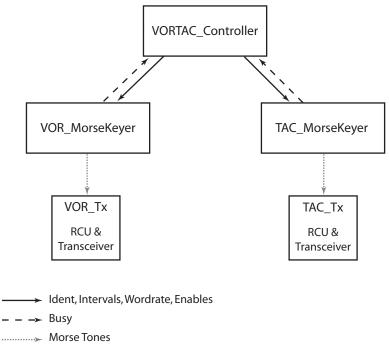


Figure 49: VORTAC_Controller data flow

Table 300, "VORTAC_Controller control inputs" below lists and describes **VORTAC_Controller** control input variables:

Name	Туре	Default Value	Description
Enable	Boolean	TRUE	When TRUE, VORTAC_Controller is enabled.
Ident	ident	N/A	The ASCII characters that drive the MorseKeyer . <i>Ident</i> is a special variable type defined as ASCII characters concatenated together. HostIn must drive this parameter.
Interval	uint16	1	Used to set the delay between words. Units are in seconds.
TACAN_Busy	Boolean	TRUE	Connects to VOR MorseKeyer busy to be informed when the keyer is keying.
VOR_Busy	Boolean	TRUE	Connects to VOR MorseKeyer busy to be informed when the keyer is keying.
VOR_Count	uint16	1	Number of keyed identifiers to skip before keying <i>TACAN</i> identifier. <i>VOR</i> and <i>TACAN</i> identifier tones are mutually exclusive.
Wordrate	uint8	1	Determines rate at which the word is played. Units are in dots per second. The faster the rate, the higher the number.

Table 300: VORTAC_Controller control inputs

Table 301, "VORTAC_Controller control outputs" below lists and describes **VORTAC_Controller** control output variables:

Name	Туре	Default Value	Description
IdentOut	ident	N/A	Drives VOR and TACAN MorseKeyer identifiers.
IntervalOut	uint16	1	Drives VOR and TACAN MorseKeyer intervals.
TACAN_Enable	Boolean	TRUE	Connects to TACAN MorseKeyer enable.
VOR_Enable	Boolean	FALSE	Connects to VOR MorseKeyer enable.
WordrateOut	uint8	1	Drives VOR and TACAN MorseKeyer word rates.

Table 301: VORTAC_Controller control outputs

16.0 Speech

The following sections describe the functionality and variables **SpeechFeed** and **Tex-tToSpeech**.

16.1 SpeechFeed

Summary: Streams audio into the speech recognition engine.

Description: This component links an audio stream containing an operator's speech to the **SpeechFeed** to perform speech recognition on the audio. Once a stream ID is created and selected, the audio is fed into the speech recognition engine and processed according to the speech recognition configuration and grammars in the project's SR Plans folder. To set up speech recognition streams and grammars, go to the *Studio Technical User Guide*.

Table 302, "SpeechFeed audio input" below describes the SpeechFeed audio input:

Name	Туре	Default Value	Description
AudioIn	audio	N/A	The audio stream directed to the speech recognition engine.

Table 302: SpeechFeed audio input

Table 303, "SpeechFeed internal parameter" below describes the **SpeechFeed** internal parameter:

Name	Туре	Default Value	Description
StreamID	id	UNASSIGNED	Name or identifier given to the speech recognition stream. Double-click UNASSIGNED to open the speech service window, and select New Bus to add a speech recognition stream. Select Set Value to set the stream in SpeechFeed .

Table 303: SpeechFeed internal parameter

16.2 TextToSpeech

Summary: TextToSpeech attaches to the ID of the specified stream and outputs the audio.

Description: TextToSpeech selects up to four streams, or however many your license allows. The gain is applied to the selected stream, and the audio routes out of the component.

Table 304, "TextToSpeech audio output" below lists and describes the **TextToSpeech** audio output variable:

Name	Туре	Default Value	Description
AudioOut	audio	N/A	The audio stream out signal.

Table 304: TextToSpeech audio output

Table 305, "TextToSpeech control outputs" below lists and describes **TextToSpeech** control output variables:

Name	Туре	Default Value	Description
Gain	float32	0.0	The strength of volume applied to the audio out sig- nal.
ActivePlaying	Boolean	FALSE	When TRUE, TextToSpeech is active.

Table 305: TextToSpeech control outputs

Table 306, "TextToSpeech internal parameter" below lists and describes the **TextToSpeech** internal parameter variable:

Name	Туре	Default Value	Description
StreamID	uint8	0	The ID of the audio streams accepts multiple audio streams.

 Table 306: TextToSpeech internal parameter

17.0 Remote Control

The following section describes URC-200's remote control capabilities.

17.1 URC-200

Summary: **URC-200** interfaces with a single URC-200 live radio through an ACE-RIU channel.

Description: URC-200 provides a low-level interface to an URC-200 radio through an ACE-RIU serial port. The interface presented in the data viewer is similar to a combination **Radio/RCU + Radio/Transceiver** data viewer. The component contains **control** and **status** sections.

Control accepts user input and drives the radio settings when applicable. Radio items in **control** are generally prefixed with an **RCU** string, as in **RCU_Preset**. Items in **status** do not have a prefix string, as in **Preset**.

If the live radio fails to respond to a query for a specific status item (e.g., a query the current preset), **URC-200** displays an error indicator (e.g., -1 or "Unavailable").

Input to the items in **control** are naively checked for validity. For example, **URC-200** does not know which frequency ranges are valid during live radio operation. On the contrary, **URC-200** assumes that you completely understand the constraints on parameters for different modes of operation. If you set an invalid input, **Transceiver** most likely returns a NAK, which *ErrorMask* eventually flags as an error.

For a more intuitive interface, go to the Remote Control in the Telestra web interface. The ideal interface to use with **URC-200** is the **Live Radio Remote Control** page of the Telestra web interface.

A Python API for interfacing with **Remote Control** in a model also exists; this API allows programmatic control over live radio entities present in the system. Contact ASTi for more information.

Table 307, "URC-200 command list" below shows the complete list of commands sent to the live radio RS232 serial interface from **URC-200**:

Command Name	Command Code
Zap	Z
Set Squelch	\$
Set Preset	Р
Set Frequency	R
Set Transmit Frequency	т
Set Modulation Mode	М
Set Tx Modulation Mode	Ν
Set Text Mode	X
Store Preset	Q
Set Power Level	#
Set Beacon Mode	*
Set Keypad Control	+
Set Transmit Mode	В
Set Receive Mode	E
Synth Lock/Unlock	?01
Receive Sig Strength	?03
SW Version	?08
Squelch Level Setting	?09
Current Preset Status	?10
Text Mode Status	?11
General Status	?11
General Mode Status	?12
Squelch Status	?13

Table 307: URC-200 command list

Note: For more information about URC-200 commands, go to the URC-200 operator manual.

Table 308, "URC-200 control inp	outs" on page 272 shows URC-20	0 control input variables:
---------------------------------	--------------------------------	-----------------------------------

Name	Туре	Default Value	Description
ControlEnable	Boolean	TRUE	When TRUE , remote control is enabled. Con- trol messages are passed between the ACE- RIU and the live radio.
LoadPreset	Boolean	TRUE	 When TRUE, URC-200 attempts to load presets but does not attempt to modify preset settings: Frequency Tx Frequency Modulation Mode Tx Modulation Mode Power Level Text Mode
StorePreset	Boolean	FALSE	Triggers a Store Preset command on the remote radio, saving the current preset's state to the radio's internal memory. Go to the radio's operator manual for more information. The save command sends when this variable is first set to TRUE from a FALSE state.
ExternalPTT	Boolean	FALSE	When TRUE , the control message exchange between the ACE-RIU and live radio are hal- ted. Keep TRUE when the live radio is trans- mitting, so the radio is not simultaneously transmitting and processing remote control messages. This might cause excessive noise on the transmitted signal.
RCU_Preset	uint8	0	Sets the live radio preset to switch to. Valid pre- sets are in the range of 0–9.
RCU_Freq	uint64	0	Set the live radio frequency to tune to. Valid fre- quencies vary depending on other factors; go to the radio's operator manual for more inform- ation.

Name	Туре	Default Value	Description
RCU_TxFreq	uint64	0	Sets the live radio transmit frequency to tune to. URC-200 cannot set the frequency and transmit frequency together. If the two fre- quencies must match, set both of them sep- arately. Valid frequencies varies depending on other factors; for more information, go to the radio's operator manual.
RCU_Squelch	uint8	255	Sets the live radio squelch level. Values in the range 0–255 are valid, with 255 being the highest level.
RCU_PowerLevel	uint8	0	Sets the live radio power level. Three settings exist: • 0: LO • 1: MED • 2: HI Some settings are not possible; go to the radio's operator manual for information on set- ting the power level.
RCU_TextMode	uint8	0	 Set the live radio text mode. Two settings exist: 0: plain text (PT) 1: cipher text (CT)
RCU_ModMode	uint8	0	 Set the live radio to receive modulation mode. Two settings exist: 0: AM 1: FM Some settings are not possible in all cases; to set the modulation mode, go to the radio's operator manual.
RCU_TxModMode	uint8	0	 Sets the live radio transmit modulation mode. Two settings exist: <i>0</i>: AM <i>1</i>: FM Some settings are not possible in all cases; to set the modulation mode, go to the radio's operator manual.

Name	Туре	Default Value	Description
RCU_Operating Mode	uint8	0	Set the live radio's operating mode. Four pos- sible settings exist:
			 0: BYPASS 1: RECEIVE 2: TRANSMIT 3: BEACON
			In BYPASS mode, URC-200 does not attempt to control the operating mode. This is useful if another entity is driving the live radio's oper- ating mode. For example, if you use a handset with the radio while the remote control system is connected, BYPASS. For more information about the other three modes, go to the radio's operator manual.
			Caution : TRANSMIT and BEACON mode imply that Transceiver is actively keyed and transmitting over the air. Ensure the radio has antennae or equivalent load available.

Table 308: URC-200 control inputs

Table 309, "URC-200 control outputs" on page 275 lists and describes **URC-200** control output variables:

Name	Туре	Default Value	Description
Interface	string	N/A	A helpful status message about the state of the live radio remote control interface. Example messages include the following:
			 "Remote Control Off:" signifies that the serial messaging is disabled for the interface, most likely because <i>ControlEnable</i> is FALSE. "Err: Bad device name/chan:" an invalid ACE-RIU device or channel has been specified. "Err: check mask / log:" a control query might be failing consistently; check the component log. For more information, go to the <i>radio.log_level</i> control. "Okay:" normal operation

Name	Туре	Default Value	Description
SuccessMask	uint64	0	A 64-bit mask for tracking the outcome of com- mands to the live radio. To find specific com- mands in the mask, go to Command List . When a command succeeds, as determined by receiving an ACK from the live radio and or receiving a valid response, the bit for the com- mand is 1. The bit is 0 when the command is sent again.
ErrorMask	uint64	0	 A 64-bit mask that tracks the outcome of commands to the live radio. To find specific commands in the mask, go to 17.1, "URC-200" on page 268. Two conditions cause a command to fail: URC-200 receives an NAK from the live radio. URC-200 receives a response that does not comply with the protocol defined in the <i>General Dynamics URC-200 V2 Manual, Document No. 99- P42304K</i>). When a command fails three times, the corresponding bit in <i>ErrorMask</i> is 1. If the same command succeeds once, the bit resets to 0.
Option	string	None	 A string detailing the options installed on the URC-200 transceiver. Valid strings include: <i>None</i>: no options installed. <i>30_90</i>: the EBN-30 option is installed. <i>420</i>: the EBN-400 option is installed. <i>30_90 & 420</i>: both EBN-30 and EBN-400 options are installed. <i>Unavailable</i>: displayed on error.
SquelchStatus	int8	0	 The live radio's squelch status; two values are valid: 0: the transceiver is squelched. 1: the transceiver's squelch has broken. -1: shown on error

Name	Туре	Default Value	Description
Overtemp	int8	0	 The live radio's overtemp status; two values are valid: 0: temperature is okay
			 <i>1</i>: overtemp condition <i>1</i>-: error
SynthLock	int8	0	The live radio's synthesizer lock status; two values are valid:
			 0: synthesizer is unlocked 1: synthesizer is locked -1: error
SWVersion	string	None	The live radio's software version; an "Unavail- able" displays on error.
Preset	int8	0	The live radio's preset number; valid values are in the range 0–9. A -1 value is shown on error.
Freq	int64	0	The live radio's receive frequency. A -1 value is shown on error.
TxFreq	int64	0	The live radio's transmit frequency. A -1 value is shown on error.
Squelch	int16	0	The live radio's squelch level, valid values are in the range of 0–255. A -1 value is shown on error.
PowerLevel	int8	0	 The live radio's power level. Valid values are: 0: LO 1: MED 2: HI -1: error
TextMode	int8	0	 The live radio's text mode. Valid values are: 0: plain text (PT) 1: cipher text (CT) -1: error
ModMode	int8	0	 The live radio's receive modulation mode. Valid values are: 0: AM 1: FM -1: error

Name	Туре	Default Value	Description
TxModMode	int8	0	 The live radio's transmit modulation mode. Valid values are: 0: AM 1: FM
			• -1: error
OperatingMode	int8	0	 The live radio's operating mode. Valid values are: 1: Receive 2: Transmit 3: Beacon -1: Error
RxSignalStrength	int16	0	The live radio's receive signal strength; valid values are in the range 0–255. A -1 value is shown on error.

Table 309: URC-200 control outputs

Table 310, "URC-200 internal parameters" below lists and describes URC-200 internal parameter variables:

Name	Туре	Default Value	Description
DeviceName	deviceid	<select></select>	Select the name of the ACE-RIU device.
DeviceChannel	riu_channel	None	Select the ACE-RIU serial channel; serial chan- nels can be either A or C.
RadioHandle	string	<edit></edit>	Enter a useful handle to help identify this radio object. The handle is useful when using the Remote Control feature in the Telestra web interface.
radio.log_level	uint32	0	Set this parameter to affect how much logging URC-200 outputs. Only a level of 1 is sup- ported. Set this parameter to 0 if you are not actively debugging URC-200, or the live radio interface as spurious log output is produced. Looking at the log is useful for identifying spe- cific, unresponsive commands. This para- meter is only accessible in Full View.

Table 310: URC-200 internal parameters