
Revision T
Version 0
April 2025
Document DOC-TEL-ASC-RM-T-0

Advanced Simulation Technology inc.
500A Huntmar Park Drive • Herndon, Virginia 20170 USA

(703) 471-2104 • asti-usa.com

Studio
Components
Reference
Guide

Studio Components Reference Guide

© Copyright ASTi 2025

Restricted rights: copy and use of this document are subject to terms provided in ASTi’s Soft-
ware License Agreement (www.asti-usa.com/license.html).

ASTi
500A Huntmar Park Drive
Herndon, Virginia 20170 USA

https://www.asti-usa.com/license.html

Red Hat Enterprise Linux (RHEL) Subscriptions

ASTi is an official Red Hat Embedded Partner. ASTi-provided products based on RHEL
include Red Hat software integrated with ASTi's installation. ASTi includes a Red Hat sub-
scription with every purchase of our Software and Information Assurance (SW/IA) main-
tenance products. Systems with active maintenance receive Red Hat software updates and
support directly from ASTi.

Export Restriction

Countries other than the United States may restrict the import, use, or export of software that
contains encryption technology. By installing this software, you agree that you shall be solely
responsible for compliance with any such import, use, or export restrictions. For full details
on Red Hat export restrictions, go to the following:

www.redhat.com/en/about/export-control-product-matrix

http://www.redhat.com/licenses/export

iv

Revision history
Date Revision Version Comments

2/26/2009 Preliminary 0 (4.14) New components include ByteToBit,
ByteMerger, CellIn, CellOut, VibrationCapture,
and IntercomTransceiver. Updated components
include CommPanel components for optimization.
Fixed components include PFilter and AutoDRED
for gain defaults.

3/13/2009 Preliminary 1 (4.15) New components include Demux, Envelope,
PEnvelope, Incrementer, FDACP (for a specific pro-
gram).

4/27/2009 Preliminary 2 (4.16) New components include Compressor,
internal testing components, and program-specific
components.

6/30/2009 A 0 (4.18) New components include Audio/Delay,Mes-
sageList updated and moved to Audio group,
ACU2channel, RadiusChannel, Satellite, and pro-
gram-specific components.

8/04/2009 B 0 (4.19) New components include NoiseSource, Tex-
tToSpeech, and program-specific components.
Updated/fixed components included AutoDRED,
MessageList, RecordReplay, Satellite, Trans-
ceiver, and Relay.

9/19/2009 B 1 (4.20) New components include 5BandFilter,
MultiFilter, ACE_RIU_SerialByteOut, ACU2_Seri-
alByteOut, and VoisusChannel. Updated/fixed com-
ponents include Compressor.

10/29/2009 C 0 (4.21) New components include Delay.
Updated/fixed components include Compressor,
AutoDRED,Mixer, ACU2, and Satellite.

11/24/2009 C 1 (4.22) Updated/fixed components includeWave,
MorseKeyer, Delay, Compressor, and Trans-
ceiver.

1/27/2010 D 0 (4.23) New components include SimpleMixer, Com-
mPanel8Stereo, AGC, CompressorLimiter,
Expander,Gate, and ColocatedBeacon. Updated
components include Playsound,MorseKeyer, and
MarkerTone,

3/22/2010 D 1 (4.24) Updated components include Transceiver,
VORTAC_Controller, and RCUbasic.

v

Date Revision Version Comments

5/24/2010 E 0 (4.26) New components include PulseStream and
PassThrough. Updated components include
AmpOut and Incrementer.

9/24/2010 F 0 (4.28) Updated components include Relay.

11/22/2010 F 1 (4.29) Updated components include 5BandFilter.

2/23/2011 G 0 (4.30) New components include ByteSplitter and
PulseStep.

4/29/2011 H 0 (4.31) New components include Com-
mPanel8HRTF4, HRTFOut4, and URC-200.

7/2011 H 1 (4.32) Updated components include Playsound.

9/2011 H 2 (4.33) Updated components include Demux.

11/29/2011 I 0 (4.34) New components include PulseSequence.

12/2011 I 1 Updated components include Playsound, Counter,
RCUbasic, and Transceiver.

3/19/2012 J 0 N/A

2/28/2013 K 0 N/A

6/14/2013 L 0 N/A

1/29/2014 M 0 N/A

N/A N 0 N/A

2/9/2016 O 0 Fixed broken link and makes small updates.

9/26/2017 P 0 (6.4.0) Added SpeakerEQ component description as
well as "Set up and run SpeakerEQ" and "Tune
SpeakerEQ."Added "StereoWavRecord".

12/1/2017 P 1 Added caution note to "StereoWavRecord".

1/18/2018 P 2 Removed incorrect hyperlink in "Transceiver" sec-
tion.

4/30/2018 Q 0 Changed EngineLit variable's type to Boolean in
"EngineLevelD."

8/24/2018 Q 1 Added caution note to "Set up and run SpeakerEQ"
and made minor style changes to "Set up and run
SpeakerEQ" and "Tune SpeakerEQ."

2/21/2020 R 0 (7.5.0) Documented CryptoSys input control in RCU-
basic. Added FilterBank and IcomBalancer8 com-
ponents. Edited content for grammar and accuracy.

vi

Date Revision Version Comments

3/29/2021 S 0 Documented TxCryptoSoundIdx and
RxCryptoSoundIdx in Transceiver and SoundIndex,
Trigger, and LibraryId in Playsound. Documented
RTPStream and added "Add an RTP StreamMap"
and "Assign the RTP StreamMap to a Telestra
server." Made other minor grammar and style
updates.

9/27/2022 S 1 Updated the PTTselect description in "ACUchannel."
Removed "license" descriptions in the Red Hat Enter-
prise Linux export statement in the front matter.

2/13/2022 S 2 Documented the tsr2wav.py script in "RecordRe-
play."

3/8/2023 S 3 Updated the Red Hat Enterprise Linux subscription
and export statement to the front matter.

1/19/2024 S 4 Updated deprecated "Target," "ACE," and "Remote
Management System" terminology; fixed position
behavior error in "StereoWavRecord."

3/11/2025 S 5 Added 25 ms packet length to "RTPStream."
Removed dangling AudioOut variable and fixed inac-
curate mono/stereo audio input and output statement
in "ACU2channel."

4/30/2025 T 0 Improved RTPStreammap parameter wording in
"Add an RTP StreamMap," fixed a conditions error,
and made minor edits to grammar and style through-
out the document.

vii

viii

Contents

1.0 Introduction 1
1.1 Component viewer 2

2.0 Audio components 3
2.1 AmpMod 3

2.2 AudioFeed 5

2.3 AutoDRED 5

2.3.1 Set up AutoDRED 8

2.4 ComplexPlaysound 10

2.5 Compressor 13

2.6 Delay 21

2.7 Demux 22

2.8 Envelope 23

2.9 Filter 24

2.10 Lockout 27

2.11 LevelDCapture 29

2.12 MessageList 32

2.13 Mixer 34

2.14 NoiseSource 36

2.15 PEnvelope 40

2.16 PFilter 41

2.17 Playsound 42

2.18 Pulse 45

2.19 PulseSequence 48

2.20 PulseStep 50

2.21 PulseStream 53

2.22 RecordReplay 59

2.23 SimpleMixer 64

ix

2.24 Sequencer 65

2.25 StereoWavRecord 66

2.26 VolumeControl 70

2.27 Vox 71

2.28 Wave 75

3.0 AudioIO 79

4.0 CommPanel 80
4.1 CommPanel 4, 8, 16, 32 80

4.2 CommPanel8Stereo 83

4.3 StereoCommPanel 86

5.0 Control 90
5.1 BitToByte 90

5.2 ByteToBit 91

5.3 ByteMerger 92

5.4 ByteSplitter 93

5.5 Counter 95

5.6 Delay 99

5.7 Ident 100

5.8 Incrementer 101

5.9 IntCompare 102

5.10 IntFlexTable 104

5.11 IntTable 105

5.12 Latch 106

5.13 LogicTable 107

5.14 MathFunction 109

5.15 NumToString 112

5.16 PassThrough 114

6.0 Dynamics 115

x

6.1 AGC 116

6.2 CompressorLimiter 117

6.3 Expander 120

6.4 Gate 121

7.0 Environmental Cue 123
7.1 5BandFilter 123

7.2 Engine 125

7.3 EngineLevelD 128

7.4 MultiFilter 131

7.5 PropRotor 135

7.6 SpeakerEQ 138

7.6.1 Set up and run SpeakerEQ 143

7.6.2 Tune SpeakerEQ 147

7.7 VibrationCapture 151

7.8 FilterBank 152

7.9 FilterPlan 153

8.0 Highway Service 154
8.1 AuralCue 155

8.2 AuralCuePosn 156

8.3 SpeakerOutput 157

9.0 Highway 3D Service 159
9.1 Audio > Audio Feed 163

9.2 Feeders > AuralCuePosn 164

9.3 Feeders > Balancer1, 4, 8, 16 165

9.4 AudioIO > Headphone3DOut 166

9.5 AudioIO > HighwayOut 167

9.6 AudioIO > SpeakerOut 168

10.0 HRTFService 169

xi

10.1 HRTFOut4 170

10.2 CommPanel8HRTF4 172

11.0 IOInterfaces 175
11.1 ACE_RIU_channel 175

11.2 ACE_RIU_SerialByteOut 177

11.3 ACUchannel 179

11.4 ACU2channel 181

11.5 ACU2_SerialByteOut 184

11.6 AmpOut 185

11.7 RTPStream 187

11.7.1 Add an RTP StreamMap 189

11.7.2 Assign the RTP StreamMap to a Telestra server 191

11.8 SerialPort 192

11.9 VoisusChannel 192

12.0 Intercom 195
12.1 IcomBalancer8 195

12.2 IcomRx 196

12.3 IcomTx 197

12.4 Intercom_Bus_Power 198

12.5 IntercomBusService 199

13.0 Platform 201
13.1 Detonation 201

13.2 Entity 202

13.3 Fire 202

13.4 GeocentricWorldPosition 203

13.5 GeodeticWorldPosition 204

13.6 RelativePosition 206

14.0 Host Control 211

xii

14.1 HostIn 211

14.2 HostOut 215

14.3 CellService 218

14.3.1 CellIn 218

14.3.2 CellOut 219

15.0 Radio 220
15.1 ColocatedBeacon 221

15.2 GenericControl 224

15.3 HfServer 227

15.4 IntercomTransceiver 228

15.5 ICU 232

15.6 MarkerTone 232

15.7 MorseKeyer 236

15.8 RCUbasic 238

15.9 Receiver 240

15.10 Relay 241

15.11 Satellite 245

15.12 Transceiver 249

15.13 Transmitter 262

15.14 VORTAC_Controller 264

16.0 Speech 266
16.1 SpeechFeed 266

16.2 TextToSpeech 266

17.0 Remote Control 268
17.1 URC-200 268

xiii

1.0 Introduction
Studio is a powerful suite of software tools providing a software development toolkit for
building sound and communications models. In Studio, models are developed using an array
of complex components.

By modifying the components, you can construct anything from a small simulation element to
a complete sound and communications audio modeling system for your application. In other
words, the components are flexible enough to let you construct basic intercom systems and
models that closely match the functionality of a commercial or military platform com-
munication system.

The purpose of this manual is to provide extensive information on the Studio component
structure and the operation of each component. The components are organized in the fol-
lowing order.

l Audio

l AudioIO

l CommPanel

l Control

l Dynamics

l Environmental Cue

l Highway 3D Service

l Intercom

l IOInterfaces

l Platform

l Host Control

l Radio Components

l Speech

Note: Not all of the features and menu items that appear on your system are described in
this manual.

While the components allow you to construct much of the audio simulation and infrastructure
for a given application, you must still develop a good portion of additional simulation code to
drive the constructed model in sufficient fashion, fully achieving the sound and com-
munications operations of your application.

Copyright © 2025 Advanced Simulation Technology inc. 1

Studio Components Reference Guide (Rev. T, Ver. 0)

Each component is listed with a general summary and description, and the remainder of the
section is divided into table formats for the inputs, outputs, and internal parameters. For the
remainder of this document, each component section is organized into the following table sec-
tions:

l Inputs
o Audio Inputs
o Control Inputs

l Outputs
o Audio Outputs
o Control Outputs

l Internal parameters: any values that must be set as part of a component configuration
that DO NOT have an external connection port.

Note: Not every component has all the tables listed above; tables may vary depending on
the complexity of the component.

Within each table, the parameters are organized alphabetically for search ability.

1.1 Component viewer
The component viewer provides specific component information and the component values.
Each component has two views:

l Filtered: displays the most important parameters that must be set.

l Unfiltered: displays every parameter available for that component.

Tab Name Description
Data Data Viewer lists the primitives in a tree view. To expand the view, select the

arrows to show the variables within a primitive. In some cases, a variable
within a primitive contains its own set of variables and can also be expanded.
The dotted lines in From and To represent links to the component.

Links The link inspector tab displays input and output links and details, includingOut
Source Variable, Destination, Destination Variable, and In Source,
Source Variable, and Destination Variable.

Info This setting displays information about the component.

View/Edit Descrip-
tion

This setting allows you to add a description of the component.

Table 1: Component viewer tabs

2 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

2.0 Audio components
Mix, filter, or add audio components into highway channels through a feeder connection. The
following section details audio components and their internal parameters, including the fol-
lowing:

l AmpMod

l AudioFeed

l AutoDRED

l ComplexPlaysound

l Compressor

l Delay

l Demux

l Envelope

l Filter

l LevelDCapture

l Lockout

l MessageList

l Mixer

l NoiseSource

l PEnvelope

l PFilter

l Playsound

l Pulse

l PulseSequence

l PulseStep

l PulseStream

l RecordReplay

l SimpleMixer

l Sequencer

l VolumeControl

l Vox

l Wave

2.1 AmpMod
Summary: Amplitude Modulator (i.e., AmpMod) generates a carrier signal with an amp-
litude controlled by a modulating signal. This is useful for general warning tones (e.g., Radar
Warning Receivers) that require dynamic control. Complex warning tones can be generated
when the amplitude modulator is used with Pulse.

Description: AmpMod provides a signal multiplication capability between two signals, a car-
rier waveform, and a modulating envelope.

The carrier waveform is the external signal source connected to the carrier input parameter.
CarrierOffset is an offset value added to the amplitude of the carrier waveform before mod-
ulation. If no signal source is connected to Carrier, and CarrierOffset is 0, AmpMod does
not generate an output signal. If no signal source is connected to Carrier, and CarrierOffset is
not 0, AmpMod uses the offset value as a DC carrier (i.e., offset).

Copyright © 2025 Advanced Simulation Technology inc. 3

Studio Components Reference Guide (Rev. T, Ver. 0)

Gain controls the AmpMod output's amplitude. When the gain is less than or equal to 0,
AmpMod does not output a signal.

The modulating signal is the external signal source connected to ModulationSignal. Typ-
ically, the modulating signal source is a square wave or pulse; however, you may use any sig-
nal type. ModulationOffset is the offset value added to the amplitude of the modulating signal
before the lag filter is applied. As a result, the modulation signal can be offset from zero to
allow for control of the modulation depth. The modulation offset should be 1.0 to provide a
full depth of modulation from a square or sinusoidal source. This assumes the gain of the ori-
ginating signal is set to 1.0, in which case it swings between -1.0 and 1.0, hence the need for
a 1.0 offset. The AmpMod input variable controls whether the modulating signal is applied
to the carrier. If not, the signal source is connected to ModulationSignal, and the AmpMod
does not modulate the carrier signal.

FilterFrequency determines the filter constant for the lag filter, which filters the modulating
signal. This lag filter softens the edges, which occur when a square wave modulates a sine
wave. The filter constant determines the effective slew rate of the modulating signal.

Note: The lag filter is an a-rate function, not a k-rate function.

Table 2, "AmpMod audio inputs" below displays AmpMod audio input variables:

Name Type Default
Value

Modifier Modifier_
default

Range

CarrierSignal audio N/A N/A N/A N/A

CarrierOffset float32 1.0 Multiply (*) 0.0 0.0–Inf

Gain float32 1.0 Multiply (*) 1.0 0.0–Inf

ModulationSignal audio N/A N/A N/A N/A

ModulationOffset float32 1.0 Multiply (*) 0.0 0.0–1.0

Modulate Boolean FALSE XOR TRUE N/A

Table 2: AmpMod audio inputs

Table 3, "AmpMod audio output" below displays the AmpMod audio output variable:

Name Type Default
Value

Modifier Modifier_
default

Range

OutSignal audio N/A N/A N/A N/A

Table 3: AmpMod audio output

4 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 4, "AmpMod internal parameter" below displays the AmpMod internal parameter vari-
able:

Name Type Default
Value

Modifier Modifier_
default

Range

FilterFrequency float32 25.0 N/A N/A N/A

Table 4: AmpMod internal parameter

2.2 AudioFeed
This component is described in Section 9.0, "Highway 3D Service" on page 159.

2.3 AutoDRED
Summary: AutoDRED conducts a series of five tests to verify the system’s speaker setup.

Description: AutoDRED starts the first test by sending pink noise to all speakers in the sys-
tem setup. Test 2 sends a narrowband noise centered at 100 Hz out from each individual
speaker in the setup. Test 3 sends a narrowband noise centered at 1,000 Hz from each indi-
vidual speaker in the setup. Test 4 sends a narrowband noise centered at 10,000 Hz from each
individual speaker in the setup. Test 5 plays pink noise from each individual speaker.

If a test fails, ErrorCode displays the channel number that failed. If all tests pass, it confirms
that all speakers are working properly in the system's setup.

For the initial automated setup procedure, set TestEnable and SetupEnable to TRUE. This
action runs the setup tests for every channel. Setup takes approximately two minutes per chan-
nel. Setting up to 16 channels takes approximately 32 minutes.

Important: If possible, clear the room or simulator with the speakers during testing. If you
must be in the same room during testing, remain still with no movement.

Table 5, "AutoDRED audio input" below lists and describes the AutoDRED audio input vari-
able:

Name Type Default Value Description
InSignal audio N/A Connects to the AutoDRED's microphone's audio

input signal.

Table 5: AutoDRED audio input

Copyright © 2025 Advanced Simulation Technology inc. 5

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 6, "AutoDRED control inputs" below lists and describes AutoDRED control input vari-
ables:

Name Type Default
Value

Description

CaseDuration float32 0.0 The amount of time sounds are played for each
test case.

NumChannels uint8 0 Set this value to the number of speakers in the sys-
tem setup. Limit is 16 channels.

SetupEnable Boolean FALSE If TRUE, AutoDRED initiates the automated setup
procedure. This process may take a few minutes,
depending on the number of channels (about two
minutes per channel).

Test2Freq float32 100.00 Sets the center frequency for Test 2.

Test3Freq float32 1000.00 Sets the center frequency for Test 3.

Test4Freq float32 7000.00 Sets the center frequency for Test 4.

TestCaseSelect uint8 0 Use this with TestEnable to select the test.
l 1: sends pink noise to all speakers.
l 2: sends a narrowband noise centered at 100
Hz to each individual speaker.

l 3: sends a narrowband noise centered at 1,000
Hz to each individual speaker.

l 4: sends a narrowband noise centered at
10,000 Hz to each individual speaker.

l 5: sends pink noise to each individual speaker.

TestEnable Boolean FALSE Set to TRUE to begin Tests 1–5.

Table 6: AutoDRED control inputs

6 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 7, "AutoDRED control outputs" below lists and describes AutoDRED control output
variables:

Name Type Default
Value

Description

Channel uint8 0 Displays the channel number that you are testing.

ErrorCode uint32 0 Displays the number of the speaker that fails. This
number appears until TestEnable is reset.

LevelDifference float32 0 Decibel difference between the last channel tested
and the reference value that was created during
the initial setup procedure.

TestCase uint8 0 Displays the test case that is currently running.

TestRunning Boolean FALSE TRUE indicates that speaker setup or testing is cur-
rently in progress.

Time float32 0.0 Amount of time the test has been running.

Table 7: AutoDRED control outputs

Table 8, "AutoDRED internal parameters" on the next page lists and describes AutoDRED
internal parameter variables:

Name Type Default
Value

Description

BackgroundLevel float32 0.0 The measured Root Mean Squared level for the
background noise test.

FilteredNoiseGain float32 1.0 Filters the gain for pink noise tests.

GainTable function N/A Choose a TableXY from theMath Plan, which
adjusts the audio gain for each individual test.
For example, you might boost the low frequency
noise volume for a subwoofer test.

LevelTable function N/A Choose a TableXY from theMath Plan. This
table should contain the measured signal levels
for each test. Copy these values from the /var/t-
mp/autodred.dat file following a setup run.

Mode dred_mode STOP Reports the current state of the component.
Options include:
l Stop
l Test
l Manual Test
l Setup

NoiseGain int32 0.10 Controls the gain for pink noise tests.

Copyright © 2025 Advanced Simulation Technology inc. 7

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Results1–Results4 float32 0 The outputs of Results1–Results4 is the audio
level for all speakers at once.

ThresholdTable function N/A Choose a TableXY from theMath Plan. This
table contains the failure thresholds for each indi-
vidual test. Values are in dB.

Table 8: AutoDRED internal parameters

2.3.1 Set up AutoDRED

This procedure assumes a prebuilt AutoDRED mode exists. To set up AutoDRED, follow
these steps:

1. Install the layout, and open the AutoDRED model in the load viewer.

2. Adjust AutoDRED gains (i.e., NoiseGain and FilteredNoiseGain) down to be careful
at first. NoiseGain controls the level of the flat pink noise test. FilteredNoiseGain con-
trols the levels of the three other noise tests, which involve bandpass filtered pink
noise.

3. Set SetupEnable and TestEnable to TRUE to do a setup run. You should hear it cycle
through four noises on each speaker. Wait for it to finish and set SetupEnable and
TestEnable to FALSE.

4. SSH into the Telestra server, and go to /var/tmp/autodred.dat, which has a nice sum-
mary of setup levels and distances above the noise floor for each test. The goal is for
most tests to be >10 dB above the noise floor. This level is not possible on some tests
(e.g., high-frequency noise through the subwoofers).

5. Adjust NoiseGain and FilteredNoiseGain, rerun the setup, and reopen /var/t-
mp/autodred.dat. Wait until most tests reach the 10 dB mark. If one particular test (e.g.,
Speaker 3, Test 4) should be louder, use GainTable to boost or cut the specific volume.
Otherwise, do not use GainTable.

6. When you are satisfied that most tests are 10 dB above the noise floor, create two
TableXYs in theMathPlan. Give the tests unique names (e.g., DRED_Ref_Levels and
DRED_Thresholds).

7. Enter the levels from /var/tmp/autodred.dat into the DRED_Ref_Levels table. Go to
the example tables for how to structure the table. The test number goes along the top,
and the speaker number goes down the side.

8. Fill in the DRED_Thresholds table to have the value of 3 dB in all entries that cor-
respond to tests that were 10 dB or more above the noise floor. For test cases that were
less than 10 dB above the noise floor, enter a high threshold (e.g., 100) to make the
case a “don't care."

8 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

9. Select Notify Telestra Server in theMathplan window to push the tables to the
Telestra server.

10. Select the two tables in the AutoDRED component, filling in LevelTable and
ThresholdTable.

11. Run the test a few times, and observe the level differences on each test. Generally tests
should be within 2 dB of the setup run.

Tips

l The 3 dB tolerances are adjustable to be tighter or looser depending on the require-
ments and what needs to be proved.

l The /var/tmp/autodred.dat file provides easier viewing of all the data. The same signal
levels are shown in the component data viewer. Distance above noise floor is only
shown in the file.

l The background noise test (Test 5) can be useful, but it should only fail if there is a
drastic change in background noise level. In theMathPlan tables for levels and
thresholds, the background noise test is the first entry in the 5.0 column. To start, set a
larger threshold (e.g., 6 dB).

Figure 1: AutoDRED RefLevel table

Copyright © 2025 Advanced Simulation Technology inc. 9

Studio Components Reference Guide (Rev. T, Ver. 0)

Populate this TableXY Function window with the measured Root Mean Squared signal level
for each speaker and test. Copy these levels from the /var/tmp/autodred.dat file after a setup
run.

Figure 2: AutoDRED threshold table

Enter failure thresholds in dB into this TableXY Function for each speaker and test. The
AutoDRED test fails if one of the measured signal levels differs from the reference levels by
more than the specified failure threshold.

2.4 ComplexPlaysound
Summary: ComplexPlaysound plays digitally encoded sound files with dynamically varying
elements. The elements occur in three sequences a ramp-up sound, a loop file, and a run-
down sound. This component is similar to the MBV sound library complex loop, except a sep-
arate component provides this functionality.

Note: Set Playsounds in ComplexPlaysound to buffer for proper operation. In the Sound
Library, set the sound buffer to TRUE.

Description: ComplexPlaysound starts playing the preamble sound file when the trigger is
TRUE. After playing the preamble in its entirety, the loop sound file plays. The loop sound
file continues to play in a loop until the trigger becomes FALSE. At this point, the postamble
sound file is played.

When TRUE, ProportionPostamblePlay allows the component to interrupt the preamble and
proportionally play the postamble. The postamble sound’s starting point depends on how
much of the preamble sound has been played. When FALSE, it plays the entire postamble
sound regardless of the preamble sound's interruption point.

10 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Trigger and Pause control playback. InComplexPlaysound, set LibraryID. You can set
GroupID in ComplexPlaysound or modify it using an external control. The indices (e.g., Pre-
amble, Postamble, Loopsound) determine which sound files are used within the specified lib-
rary and group. A group value of 0 indicates that the sound file is not in a group but directly
under the library.

The output signal can connect to any component that accepts audio as an input (e.g.,Mixer):
Complex Playsound

Loop

While Trigger = True
Trigger = False

Start Finish

Trigger = True

Preamble PostambleLoop

For example, when Trigger is TRUE, Preamble plays to the 60 percent position. When Trig-
ger is FALSE, Postamble plays to the 40 percent position.

Proportional Postamble Play

Skips LoopTrigger

= False

Start Finish
Trigger = True

60%

Preamble

40%

Postamble

Table 9, "ComplexPlaysound audio inputs" on the next page lists and describes Com-
plexPlaysound audio input variables:

Name Type Default Value Description
LoopSoundIdx playsound_

sound
0 The value of the loop file index. This

index selects a file from within a group. If
it doesn't find a match, then it doesn't play
a file. If no external variable is connected
to the index, the offset is used.

PostambleSoundIdx playsound_
sound

0 The value of the postamble file index.
This index selects a file from within a
group. If it doesn't find a match, then it
doesn't play a file. If no external variable
is connected to Index, the offset is used.

Copyright © 2025 Advanced Simulation Technology inc. 11

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description
PreambleSoundIdx playsound_

sound
0 The value of the preamble file index to be

played. This index is used to select a file
from within a group. If no matches are
found then no file is played. If no external
variable is connected to the index, the off-
set is used.

Trigger Boolean FALSE The trigger state; TRUE starts playing the
sound file.

Table 9: ComplexPlaysound audio inputs

Table 10, "ComplexPlaysound audio output" below lists and describes the Com-
plexPlaysound audio output variable:

Name Type Default Value Description
Out audio N/A The audio output signal from Com-

plexPlaysound. This signal can connect to
the audio input of another component.

Table 10: ComplexPlaysound audio output

Table 11, "ComplexPlaysound control inputs" on the facing page lists and describes Com-
plexPlaysound control input variables:

Name Type Default Value Description
GroupID playsound_

group
0 The value ofGroupID.GroupID

chooses a group from within a
sound library.
l Modifier: add (+)
l Modifier_default: 0
l Range: 0–255

OutGain float32 1.0 Applies amplitude gain control to
the output signal. If no external con-
trol is connected toOutGain, the
scale factor is theOutGain value.

12 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description
Pause Boolean FALSE The pause state; TRUE freezes the

sound file playing, and FALSE
allows the sound file to continue
from the current file position. If
Pause isn't connected to an external
variable, the modifier is the local
value.
l Modifier: XOR
l Modifier_default: FALSE

ProportionPostamblePlay Boolean FALSE Offsets the starting position of the
postamble sound file relative to the
current position of the preamble
sound file. Go to the diagram for an
example.

Table 11: ComplexPlaysound control inputs

Table 12, "ComplexPlaysound internal parameter" below lists and describes the Com-
plexPlaysound internal parameter variable:

Name Type Default Value Description
LibraryID playsound_

library
<Select> The LibraryID selects the library, which includes

sound files you may choose from.

Table 12: ComplexPlaysound internal parameter

2.5 Compressor
Summary: Compressor modifies the dynamic range of an audio signal to provide a form of
automatic volume control. This component includes the Gate, Expander, Compressor, and
Limiter stages.

Description:

Compressor consists of four stages (i.e., subcomponents):

1. Gate: ensures that no audio signal below a certain threshold level is passed to the next
stage. This stage establishes a minimum level for a signal to be processed.

2. Expander: reduces or increases the level of an audio signal if it is below a certain
threshold. This stage acts as an automatic level control for a microphone.

Copyright © 2025 Advanced Simulation Technology inc. 13

Studio Components Reference Guide (Rev. T, Ver. 0)

3. Compressor: reduces the level of and audio signal if it is above a certain threshold.
This stage prevents an input stage from over-driving or softens loud sections of audio.

4. Limiter: a Compressor with an infinite ratio and instant attack so that the output sig-
nal is a scaled version of the input signal with the highest peak level reaching the
threshold. This stage typically prevents over-driving amplifiers and speakers.

Figure 3, "Compressor stages" below shows Compressor's process:

Figure 3: Compressor stages

14 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 4, "Compressor static curve" below shows Compressor's static curve:

Figure 4: Compressor static curve

Figure 5, "Compressor input" below shows Compressor's input threshold:

Figure 5: Compressor input

Copyright © 2025 Advanced Simulation Technology inc. 15

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 6, "Compressor output threshold" below shows Compressor's output threshold:

Figure 6: Compressor output threshold

Table 13, "Compressor audio inputs and outputs" below lists and describes Compressor
audio inputs and outputs:

Name Type Default Value Description
Audio Inputs

InSignal audio N/A Input signal to Compressor.

SideIn audio N/A Side-chain input to Compressor.

Audio Outputs

OutSignal audio N/A The signal after Compressor has processed it.

Table 13: Compressor audio inputs and outputs

16 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 14, "Gate control input" below lists and describes the Gate stage's control input vari-
ables:

Name Type Default
Value

Description

GateEnable Boolean FALSE If TRUE, theGate stage is enabled and processes
the audio signal. If FALSE, the input audio is
passed unaltered to the next stage.

GateSideEnable Boolean FALSE When TRUE, allows the amplitude of an audio sig-
nal at SideIn to controlGate, which acts on the
audio signal at InSignal.

GateThreshold float32 1.0 The threshold level in dB; when the input signal
amplitude falls below this threshold,Gate pre-
vents the signal from passing.
l Modifier: -60.0

GateRelease float32 1.0 Release time in milliseconds ofGate. The longer
this time is, the longerGate remains open after
the input signal falls below the threshold.
l Modifier: 100.00

GateHold float32 1.0 Once the input signal amplitude falls below the
threshold, the input signal amplitude cannot trig-
ger it again until after this time in ms elapses.
l Modifier: 200.00

GateOutGain float32 1.0 The gain of the output audio fromGate.

Table 14: Gate control input

Copyright © 2025 Advanced Simulation Technology inc. 17

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 15, "Expander control inputs" below lists and describes the Expander stage's control
inputs:

Name Type Default
Value

Description

ExEnable Boolean FALSE If TRUE, the expander stage is enabled and pro-
cesses the audio signal. If FALSE, the input audio
passes unaltered to the next stage.

ExSideEnable Boolean FALSE When TRUE, allows the amplitude of an audio signal
at SideIn to control the Expander stage, which acts
on the audio signal at InSignal.

ExThreshold float32 1.0 Expands any signal content below this level. Values
are in dB.
l Modifier: -50.00

ExRatio float32 1.0 The input-to-output ratio applied once the input sig-
nal level falls below the Expander threshold. For
example, if the input signal is below the threshold by
1 dB, a ratio of 0.5 (1:2) produces an output under
the threshold by 2 dB. Setting the ratio above 1
makes the Expander an upward Expander. Usable
ranges for upward Expanders are not much greater
than 1 since they tend to boost signals dramatically.
l Modifier: 0.5

ExRelease float32 1.0 Expander's release time in milliseconds. Greater
values delay Expander's response to falling signal
levels.
l Modifier: 100.00

ExAttack float32 1.0 Expander's attack time in milliseconds. Greater val-
ues delay Expander's response to rising signal
levels.
l Modifier: 25.0

ExOutGain float32 1.0 The output audio gain from Expander.

Table 15: Expander control inputs

18 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 16, "Compressor control inputs" below lists and describes the Compressor stage's con-
trol inputs:

Name Type Default
Value

Description

CompEnable Boolean TRUE If TRUE, the Compressor stage is enabled and
processes the audio signal. If FALSE, the input
audio passes unaltered to the next stage.

CompAttack float32 1.0 The amount of time it takes for gain reduction to
take full effect when the input level exceeds the
threshold. Values are in ms.
l Modifier: 50.0

CompSideEnable Boolean FALSE When TRUE, allows the amplitude of an audio
signal at SideIn to control the Compressor
stage, which acts on a signal at InSignal.

CompRatio float32 1.0 The input-to-output ratio applied once the input
signal amplitude rises above the Compressor
stage's threshold. For example, when the value
is 4.0 (i.e., 4:1), an input signal that is 4 dB above
the threshold yields an output signal that only 1
dB above the threshold.
l Modifier: 4.0

CompRelease float32 1.0 The amount of time it takes for gain reduction to
dissipate when the input level falls below the
threshold. Values are in ms.
l Modifier: 500.00

CompThreshold float32 1.0 Any signal content above this level is com-
pressed. Values are in dB.
l Modifier: -6.0

CompOutGain float32 1.0 Sets the linear gain factor for the output of the
Compressor. This gain defaults to 1 if the Com-
pressor is not enabled. The gain of the output
audio from the Compressor stage.

Table 16: Compressor control inputs

Copyright © 2025 Advanced Simulation Technology inc. 19

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 17, "Limiter control inputs" below lists and describes the Limiter stage's control
inputs:

Name Type Default
Value

Description

LimAllowClip Boolean FALSE Enables a simple Limiter algorithm that clips the
signal if it breaks the specified threshold.

LimEnable Boolean FALSE If TRUE, the Limiter stage is enabled and pro-
cesses the audio signal. If FALSE, the input audio
is passed unaltered.

LimThreshold float32 1.0 The specified level that the signal is limited to. Val-
ues are in dB.
l Modifier: 0.0

LimSideEnable Boolean FALSE When TRUE, allows the amplitude of an audio sig-
nal at SideIn to control the Limiter, which acts on
the audio signal at InSignal.

OutGain float32 1.0 Sets the gain factor for the output of the Limiter
stage. This gain is applied even if LimEnable is
FALSE.

LimRelease float32 100.0 The release time (in milliseconds) of the Limiter
stage. The longer this time, the longer it takes for
the effect of Limiter to dissipate after the input sig-
nal level falls below the threshold.

Table 17: Limiter control inputs

Table 18, "Compressor internal parameters" below lists and describes the Compressor stage's
internal parameters:

Name Type Default
Value

Description

CompOutSignal audio N/A The signal after the Compressor stage processes
it.

GateOutSignal audio N/A The signal after theGate stage processes it.

ExOutSignal audio N/A The signal after the Expander stage processes it.

Table 18: Compressor internal parameters

20 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

2.6 Delay
Summary: Delays the input audio.

Description: Delay postpones audio by the specified number of frames (1.33 ms) up to one
second.

Table 19, "Delay audio input and output" below lists and describes Delay audio input and out-
put variables:

Name Type Default Value Description
Audio Input

InSignal audio N/A The delayed audio signal's input.

Audio Output

OutSignal audio N/A The delayed audio signal's output.

Table 19: Delay audio input and output

Table 20, "Delay control inputs" below lists and describes Delay control input variables:

Name Type Default Value Description

DelayFrames int32 0.0 The number of frames to delay the input audio.
Each frame equals 1.33 ms.

Important: Editing DelayFrames while it is pro-
cessing audio may cause audible popping sounds.

Enable Boolean FALSE When TRUE, the audio signal is delayed.

OutGain float32 1.0 The gain of the output audio.

Table 20: Delay control inputs

Table 21, "Delay internal parameter" below describes the Delay internal parameter variable:

Name Type Default
Value

Description

DelayMS float32 0.0 The frame delay expressed in milliseconds.

DelayFrames × 1.33 ms

Table 21: Delay internal parameter

Copyright © 2025 Advanced Simulation Technology inc. 21

Studio Components Reference Guide (Rev. T, Ver. 0)

2.7 Demux
Summary: Demultiplexer (i.e., Demux) takes an input signal and divides it among 16 out-
puts, as specified by the control.

Description: Demux is made up of one signal input, one control input, and 16 signal outputs.
Demux is commonly used for environmental cue applications where it is necessary to test dif-
ferent speakers in the simulator.

Table 22, "Demux variables" below describes Demux's variables:

Name Type Default
Value

Description

InSignal audio N/A Provides a connection to an audio signal that is to be
distributed to the signal outputs.

Table 22: Demux variables

Table 23, "Demux audio outputs" below describes Demux audio outputs:

Name Type Default
Value

Description

SignalOut00–
SignalOut15

audio N/A SignalOut00–SignalOut15 are the audio output sig-
nals from Demux. The audio signal can be routed out
to one out signal or up to 16 out signals, as des-
ignated by the control input.

Table 23: Demux audio outputs

Table 24, "Demux control input" below describes the Demux control input:

Name Type Default
Value

Description

Control int32 65535 Specifies which of the 16 SignalOut variables receive
the audio signal. The default of 65535 sends the
audio signal to all 16 outputs. The input value is bin-
ary weighted.

Table 24: Demux control input

22 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

2.8 Envelope
Summary: Envelope applies a filter to an input signal based on three math functions.

Description: Envelope applies a type of filtering to the input signal. The type of filtering
may be lowpass, bandpass, or highpass. MathFunction defines the input signal's frequency,
gain, and QFactor. Figure 7, "Audio Envelope workflow" below shows Envelope's work-
flow:

Control

Variable

Source

Audio

Input

Control

(MathFunc)

InSignal

(Audio)

Gain

Q

Freq

Filter

InSignal

OutSignal

Frequency

(MathFunc)

Gain

(MathFunc)

Q

(MathFunc)

Audio Envelope

Figure 7: Audio Envelope workflow

Table 25, "Envelope audio input and output" below lists and describes Envelope audio input
and output variables:

Name Type Default Value Description

Audio Input

InSignal audio N/A Provides a connection to an audio signal for filtering.

Audio Output

OutSignal audio N/A The output audio signal after it is filtered.

Table 25: Envelope audio input and output

Copyright © 2025 Advanced Simulation Technology inc. 23

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 26, "Envelope control inputs" below lists and describes Envelope control input vari-
ables:

Name Type Default
Value

Description

Control float32 1.0 Determines what the input is going to be based on
theMathFunctions.

Enable Boolean FALSE When TRUE, the filter is turned on.

Table 26: Envelope control inputs

Table 27, "Envelope internal parameters" below lists and describes Envelope internal para-
meter variables:

Name Type Default Value Description
FilterType filter_type2 LowPass Value used to select the filter type.

FreqFunction function <Select> The name of theMathFunction that sets the
filter's center frequency.

GainFunction function <Select> The name of theMathFunction that sets the
filter's gain.

QFunction function <Select> The name of theMathFunction that sets the
filter's Q.

Table 27: Envelope internal parameters

2.9 Filter
Summary: Filter applies a filter to an input signal.

Description: Filter applies lowpass, bandpass, or highpass filters to an input signal. Use
input variables elsewhere in the model or from the host interface to control the Filter quality
factor, roll-off frequency, and gain. Pass the input signal audio to the filter only if the derived
output gain is greater than 0.0.

The following parameters control Filter:

l Enable

l FilterType

l Frequency

l QFactor

24 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Enable is specified by an externally controlled variable and an XOR logic gate control. XOR
logic is applied to the external variable and the gate control to derive a final value for Enable.
If no external variable is connected, the value of the logic gate control becomes Enable . If
Enable is FALSE, no filtering is applied to the input signal.

FilterType determines the type of Filter applied to the input signal (e.g., Off, Lowpass, High-
pass, or Bandpass). If FilterType is turned off, no filtering is applied to the input signal. Fre-
quency provides the roll-off frequency of the Filter in Hertz. The meaning of the frequency
depends on the Filter type:

l Filter type frequency meaning

l Off ignored

l Lowpass upper bound frequency

l Highpass lower bound frequency

l Bandpass center frequency with bandwidth controlled by QFactor

QFactor is the Filter quality factor, which effectively determines the Filter roll-off for low-
pass and high pass Filters and the Filter bandwidth for bandpass Filters. QFactor is
inversely proportional to the Filter roll-off or bandwidth.

The Filter parameters derive the filter coefficients for a two-pole infinite input response (IIR)
filter. If QFactor is 0 or less, use a low value above 0 for the k calculation. If the Filter type
is off, the filter output signal is the input signal.

An amplitude gain control is applied to the Filter output. This output gain control consists of
a connection to an external control variable and a scale factor. The value of the external vari-
able is multiplied by the scale factor to drive the output gain. If no external variable is con-
nected, the value for the scale factor becomes the output gain.

Filter output audio is only active if the following conditions are TRUE:

1. The Filter output is active.

2. The derived output gain (i.e., External Variable × Scale Factor) is greater than 0.0.

Table 28, "Filter audio input and output" below lists and describes Filter audio input and out-
put variables:

Name Type Default Value Description

Audio Input

InSignal audio N/A The signal connection used as an input to the filter.

Audio Output

OutSignal audio N/A The output signal from Filter.

Table 28: Filter audio input and output

Copyright © 2025 Advanced Simulation Technology inc. 25

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 29, "Filter control inputs" below lists and describes Filter control input variables:

Name Type Default
Value

Description

Enable Boolean FALSE Determines if the input signal is filtered. If no external
control is connected to Enable, the x/modifier is the
control value.
l Modifier: XOR
l Modifier_default: TRUE

Frequency float32 1.0 Provides the roll-off frequency of the Filter. For low-
pass filters, Frequency acts as an upper bound fre-
quency. For highpass filters, Frequency acts as a
lower bound frequency. For bandpass, Frequency
acts as a center frequency, and the filter bandwidth is
determined byQFactor. If no external control is con-
nected to Frequency, the scale factor is the Fre-
quency value. The acceptable range is 0 to half of the
model sample rate.
l Modifier: multiply (*)
l Modifier_default: 2000.0

OutGain float32 1.0 Applies amplitude gain control to the output signal. If
no external control is connected toOutGain, the
scale factor is theOutGain value.
l Modifier: multiply (*)
l Modifier_default: 1.0

QFactor float32 1.0 The Filter quality factor, which effectively determ-
ines the Filter roll-off for lowpass and highpass
Filters and the Filter bandwidth for bandpass
Filters.QFactor is inversely proportional to the Filter
roll-off or bandwidth. If the input is not connected, the
scale factor is used as theQFactor value.
l Modifier: multiply (*)
l Modifier_default: 0.707100

Table 29: Filter control inputs

26 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 30, "Filter internal parameter" below shows the Filter internal parameter variable:

Name Type Default Value Description
FilterType filter_type2 LowPass Determines the type of filter applied to the input signal:

l LowPass
l HighPass
l BandPass
l LowPassQ
l BandPassQ
l HighPassQ
l Notch

If no filtering is desired, set FilterType toOFF.

Table 30: Filter internal parameter

2.10 Lockout
Summary: Lockout allows sharing of a limited number of assets on a "first-come, first-
served" basis.

Description: This component routes input audio streams (i.e., operators) to output audio
streams (i.e., assets) based on when each operator triggers his or her press-to-talk (PTT)
device. If the number of input streams is greater than the available outputs, operators who
press the PTT button last are unable to access an output and are locked out. Lockout accepts
up to eight separate operator inputs. Operators are assigned to the output assets based on
when they PTT. The first operator to PTT gains access to Asset 1, the second to Asset 2, etc.
If the number of available assets is exceeded, the next operator is locked out and unable to
gain access to any of the assets.

Once an operator releases his or her PTT, the asset allocated to him or her is available to all
operators once the release time elapses. The component is similar to an office phone system,
whereby multiple outside lines are accessible by many people, but the number of sim-
ultaneous calls is limited.

Table 31, "Lockout audio input" below describes the Lockout audio input variable:

Name Type Default
Value

Description

Operator1_Audio–
Operator8_Audio

audio N/A Input audio stream that corresponds to the PTT
of the same name. Operator audio is routed to
asset audio based on when the PTT is pressed.
The audio stream is always routed to the lowest
numbered asset that is available.

Table 31: Lockout audio input

Copyright © 2025 Advanced Simulation Technology inc. 27

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 32, "Lockout audio output" below describes the Lockout audio output variable:

Name Type Default
Value

Description

Asset1_Audio–
Asset8_Audio

audio N/A Operator audio is routed out of the component
once a PTT is pressed. When a PTT is TRUE,
the audio is always routed to the lowest available
asset.

Table 32: Lockout audio output

Table 33, "Lockout control inputs" below lists and describes Lockout control input variables:

Name Type Default
Value

Description

AssetMask byte 255 Controls which assets the operator can use; the
least significant bit corresponds to Asset1, and
the most significant corresponds to Asset8. For
example, an AssetMask of 15 would make
Asset1, Asset2, Asset3, and Asset4 available for
the operators to use.

Operator1_PTT–
Operator8_PTT

Boolean FALSE The operator PTT acts as a trigger for each of the
eight input streams. A value of TRUE is used
when an operator is trying to gain access to an
asset. The operator PTT can also be used
without the operator audio.

OperatorMask byte 255 Controls which operators can be routed to the
asset streams with the least significant bit cor-
responding to Operator1, and the most sig-
nificant corresponding to Operator8. For
example, anOperatorMask of 31 makes Oper-
ators 1, 2, 3, 4, and 5 available for use within
Lockout.

ReleaseDelay float32 1.0 The time, in seconds, that Lockout waits after a
PTT is FALSE before allowing another operator
to access an asset.

Table 33: Lockout control inputs

28 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 34, "Lockout control outputs" below lists and describes Lockout control output vari-
ables:

Name Type Default
Value

Description

Asset1_Operator–
Asset8_Operator

uint8 0 Reports which input audio stream (oper-
ator) is assigned to the corresponding out-
put (asset). For example, if Asset1_
Operator is equal to 4, that indicates that
the audio fromOperator4_Audio is being
routed to Asset1_Audio.

OperatorAssignedMask byte 0 Reports if an operator is currently
assigned to an asset. For example, a value
of 3 indicates thatOperator1 andOper-
ator2 are both routed to one of the asset
outputs.

Table 34: Lockout control outputs

2.11 LevelDCapture
Summary: LevelDCapture records audio for Level D compliance testing. The audio recor-
ded by this component can be compared to the reference audio, in real time with the scope or
offline with the spectral analysis capability accessible through the Telestra web interface.

Description: To record audio using LevelDCapture, link the record audio coming in through
the ACU2 to LevelDCapture. In the sound library, add the aircraft reference recordings and
set the path value and index number. In LevelDCapture, set the test number to match the
file’s index number, this selects the reference file to run with the test recordings. Record the
audio. The recording then goes to a file on the Telestra server. The file number resembles lib-
rary000_groupyyyyy_index00X, where yyyyy represents the Level D recording file number,
and X represents the test number. Host control can direct the test number and the start vari-
able.

In LevelDCapture, do the following:

1. Choose a library and group object (these are set in the Sound Library)

2. Set the ACU2 gain level to match the level of the reference recording.

3. Add the table function to calculate the gain level with the calibration number. This is
the number calculated during calibration of the ACU2 with the microphone.

Copyright © 2025 Advanced Simulation Technology inc. 29

Studio Components Reference Guide (Rev. T, Ver. 0)

4. Set X to the test case number and f(x) to the calibration number. This value is sent to
the ACU2.

5. Set the RecordLength function for each test case to match the amount of time the file
was recorded.

6. Set the maximum record time.

After recording the audio, open the Telestra web interface and go to Spectral Analysis.
Choose a wave set that contains the reference files, and the Telestra web interface auto-
matically links the reference file to the recorded file. Select the box to compare the files
and/or create a difference plot to show the margin of the difference. Select Start Spectral
Analysis, and the Telestra web interface generates a PDF file of the results.

Table 35, "LevelDCapture audio inputs and outputs" below lists and describes LevelDCap-
ture audio input and output variables:

Name Type Default Value Description

Audio Input

RecAudio audio N/A The audio that typically comes in from a micro-
phone linked to an ACU2. The audio is recor-
ded; similar to RecordReplay.

Audio Output

PSAudioOut audio N/A The reference file audio for the specified test
number.

Table 35: LevelDCapture audio inputs and outputs

30 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 36, "LevelDCapture control inputs" below lists and describes LevelDCapture control
input variables:

Name Type Default Value Description

ACUGain function <Select> Insert a table function containing the ACU2
gain corresponding to each test number.

RefAudio <Select> 0 The reference audio for comparison.

Playsound_LibraryID selects the library from
the sound library containing the reference
audio file to be played.

playsound_
group

0 Playsound_GroupID selects a group from the
sound library containing the reference audio
file to be played.

playsound_
sound

0 Playsound_SoundID selects a sound file from
the sound library.

Note: Similar to Playsound.

Start Boolean FALSE Triggers playback of the reference file and
recording of RecAudio.

TestNumber uint16 0 Drives the index number of the reference file
and the record file. Use one test number per
test case.

Table 36: LevelDCapture control inputs

Table 37, "LevelDCapture control outputs" below lists and describes LevelDCapture control
output variables:

Name Type Default Value Description

ACUGainResult float32 1.0 The gain applied to the ACU2 input audio.
Links to ACU2channel.

RecState player_state STOPPED Displays the RECORD state of LevelDCap-
ture. When START becomes TRUE, it
changes from STOPPED to RECORDING.

Table 37: LevelDCapture control outputs

Copyright © 2025 Advanced Simulation Technology inc. 31

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 38, "LevelDCapture internal parameters" below lists and describes the LevelDCapture
internal parameter variable:

Name Type Default Value Description

RecordLength

Function function <Select> A table function that contains the record time
corresponding to the current test number.

Result float32 0.0 The length of the recording.

Max uint32 120 Set the maximum record length in seconds.

Table 38: LevelDCapture internal parameters

2.12 MessageList
Summary: Plays through a list of sound files and sequences ATIS or warning messages.

Description:MessageList is similar to Playsound but accepts an array of sound indices to
play. You can set the sound indices locally or drive them with a host computer. Sounds play
sequentially. The next sound starts immediately after the current sound stops.

Table 39, "MessageList audio outputs" below lists and describesMessageList audio output
variables:

Name Type Default
Value

Description

OutSignal audio N/A The output signal from the component.

RepeatCount uint16 0 This number increments each time the same index
plays in a row.

Table 39: MessageList audio outputs

32 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 40, "MessageList control inputs" below lists and describesMessageList control input
variables:

Name Type Default
Value

Description

LibraryID playsound_
library

<Select> Sound library selection from layout's repository.

GroupIndex playsound_
group

0 Selects a group from within the sound library.

SoundIndices message [0,0,0...0] Array of sound indices to be played (up to 256).

Trigger Boolean FALSE Trigger state; TRUE playsMessageList.

Reset Boolean FALSE When TRUE,MessageList stops playing. When
FALSE,MessageList resumes playing at the first
sound index.

Pause Boolean FALSE TRUE pauses playback of the current sound.
When FALSE, play continues from the current file
location.

Playall Boolean FALSE DeterminesMessageList behavior when not
triggered. TRUE forces the entire list to play;
FALSE stops theMessageList.

Continuous Boolean FALSE DeterminesMessageList behavior when Trigger
is TRUE and it reaches the end of the list. If TRUE,
MessageList loops to the beginning and continues
playing. If FALSE,MessageList stops.

OutGain float32 1.0 Applies the amplitude gain control to the output sig-
nal. If an external control is not connected, the
scale factor equals the gain value.

Table 40: MessageList control inputs

Table 41, "MessageList control output" below lists and describes theMessageList control out-
put variable:

Name Type Default
Value

Description

CurrentSound playsound_
sound

0 Outputs the currently playing sound index.

Table 41: MessageList control output

Copyright © 2025 Advanced Simulation Technology inc. 33

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 42, "MessageList internal parameter" below lists and describes theMessageList
internal parameter variable:

Name Type Default
Value

Description

Delay float32 0 The length of time (in seconds) to wait before loop-
ing back to the beginning of the list when in
Continuousmode.

Table 42: MessageList internal parameter

2.13 Mixer
Summary:Mixer provides controlled mixing of up to eight signals into a single, composite
signal.Mixer determines which of the eight signals to mix with both individual and overall
gain control. A ninth signal is always mixed into the output signal and can cascade multiple
Mixers together.

Description:Mixer mixes up to nine signal sources into a single, composite output stream.
Control mixes the first eight signals, determining which signal(s) to include in the output.
Control is a single byte in which each bit controls the switch state of a signal. If a given bit is
set, the signal corresponding to that bit is added to theMixer output. If present, the ninth sig-
nal is always added to theMixer output, regardless of Control's value.

Each signal source has its own amplitude gain control. Each signal gain control connects to
an external, controlled variable and a scale factor. The value of the external variable is mul-
tiplied by the scale factor to derive the signal gain. If no external variable is connected, the
value of the scale factor becomes the signal gain.

The amplitude of the finalMixer output is controlled by the output gain control. Like the sig-
nal gains, the output gain is an external variable multiplied by a scale factor.

TheMixer output audio is only active if all of the following conditions are TRUE:

1. At least one if the signal sources (Signal1–Signal8 or InSignal) is active.

2. The derived amplitude gain(s) (External Variable × Scale Factor) for the active signal
source(s) is greater than 0.0.

3. The bit in Control corresponding to the active signal source must be set. This condition
does not apply to InSignal because it is not affected by Control.

4. The finalMixer output gain control is greater than 0.0.

34 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 43, "Mixer audio inputs and outputs" below lists and describesMixer audio input and
output variables:

Name Type Default Value Description

Audio Inputs

InSignal audio N/A Additional signal added to output ofMixer; inde-
pendent of the control variable. Allows multiple
Mixers to cascade together, mixing the audio of
more than eight signals.

Signal1–Sig-
nal8

audio N/A Eight signals mixed into composite output according
to control selectors and gain values.

Audio Outputs

OutSignal audio N/A Composite output fromMixer.

Table 43: Mixer audio inputs and outputs

Table 44, "Mixer control inputs" on the next page lists and describesMixer control input vari-
ables:

Name Type Default
Value

Description

Control byte 255 Switches eight signals on or off. Each bit in the con-
trol byte enables one of eight signals. When the least
significant bit (i.e., Bit 0) is 1, Signal1 is added to the
Mixer output. Each bit in the sequence controls
remaining signals. Signal8's control is the most sig-
nificant bit (i.e., Bit 7). If no external variable is con-
nected, Control uses the modifier's value.

l Modifier: and (&)
l Modifier_default: 255
l Range: 0–255

InSig_Gain float32 1.0 The amplitude gain control for InSignal. If no external
variable is connected, InSig_Gain uses the scalar's
value.

l Modifier: multiply (*)
l Modifier_default: 1.0

Copyright © 2025 Advanced Simulation Technology inc. 35

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Sig1_Gain–
Sig8_Gain

float32 1.0 Amplitude gain control for signals 1–8. If no external
variable is connected, signal gain uses scalar's
value.

l Modifier: multiply (*)
l Modifier_default: 1.0

Out_Gain float32 1.0 Amplitude gain control for the finalMixer output. If no
external variable is connected,Out_Gain uses the
scalar's value.

l Modifier: multiply (*)
l Modifier_Default: 1.0

Table 44: Mixer control inputs

2.14 NoiseSource
Summary: NoiseSource generates a filtered white, pink, or brown noise signal. The type of
filtering applied may be lowpass, bandpass, or highpass. The filter quality factor, roll-off fre-
quency, and gain can be controlled by input variables from elsewhere in the model or from
the host interface. The noise signal is an internal pseudo-random noise source, providing an
improved noise source that are easier to tune.

Description: This component consists of a signal source and a filter. The source signal on
which the filter acts is white Gaussian, pink, or brown noise. The noise signal is only active if
the derived OutGain is greater than 0.0.

The following parameters control the filter:

l FilterEnable: specified by an externally controlled variable and an exclusive-OR
(XOR) logic gate control. XOR logic is applied to the external variable value and the
gate control to derive a final value for FilterEnable. If no external variable is con-
nected, the value of the logic gate control equals FilterEnable. If FilterEnable is
FALSE, no filtering is applied to the noise signal.

l FilterType: determines the type of filter applied to the input signal (e.g., Off, Lowpass,
Highpass, or Bandpass). If Type is Off, no filtering is applied to the noise. Fil-
terFrequency (in Hertz) provides the roll-off frequency or the center frequency of the
filter, depending the selected filter's type.

l FilterFrequency: sets either the roll-off frequency or center frequency of the filter
depending on the type of the filter selected:
o Off: Ignored
o Lowpass: upper bound frequency

36 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

o Highpass: lower bound frequency
o Bandpass: center frequency with bandwidth controlled by FilterQFactor

l FilterQFactor: the filter quality factor, which determines the filter roll-off for lowpass
and highpass filters and the filter bandwidth for bandpass filters. FilterQFactor is
inversely proportional to the filter roll-off or bandwidth. These parameters drive the fil-
ter coefficients for a two-pole infinite impulse response (IIR) filter.

If FilterQFactor is 0 or less, use a very low, nonzero value for the k calculation. The
output from the filter is only active if the noise source is active. If FilterType is Off,
the filter output signal is the raw noise signal.

l OutGain: an amplitude gain control is applied to the filter output. This output gain con-
trol consists of a connection to an external controlled variable and a scale factor. The
value of the external variable is multiplied by the scale factor to derive the output gain.
If no external variable is connected, the value for the scale factor becomes the output
gain. NoiseSource output audio is only active if the output from the filter is active, and
the derived output gain (External Variable × Scale Factor) is greater than 0.0.

Table 45, "NoiseSource audio output" below lists and describes the NoiseSource audio out-
put variable:

Name Type Default
Value

Description

OutSignal audio N/A Filtered audio signal. If the filter type isOFF, it does
not produce audio.

Table 45: NoiseSource audio output

Table 46, "NoiseSource control inputs" on the next page lists and describes NoiseSource con-
trol input variables:

Name Type Default
Value

Description

FilterEnable Boolean FALSE Determines if the noise signal is filtered. If no
external control is connected to FilterEnable, the
XORmodifier is the FilterEnable value.
l Modifier: XOR
l Modifier_default: TRUE

Copyright © 2025 Advanced Simulation Technology inc. 37

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

FilterFrequency float32 1.0 FilterFrequency in Hertz provides roll-off frequency
of the filter. For lowpass filters, FilterFrequency
acts as an upper bound frequency. For highpass fil-
ter, FilterFrequency acts as a lower bound fre-
quency. For bandpass, FilterFrequency acts as a
center frequency. FilterQFactor determines filter
bandwidth. If no external control is connected to Fil-
terFrequency, scale factor the FilterFrequency
value. An acceptable range is 0 to half of the model
sample rate.
l Modifier: multiply (*)
l Modifier_default: 2000.0

FilterQFactor float32 1.0 FilterQFactoris the filter quality factor, which
determines filter roll-off for lowpass and highpass
filters and filter bandwidth for bandpass filters. Fil-
terQFactor is inversely proportional to filter roll-off
or bandwidth. This field cannot be less than or
equal to 0. If no external control is connected to Fil-
terQFactor, scale factor is the FilterQFactor value.
l Modifier: multiply (*)
l Modifier_default: 0.7071

Table 46: NoiseSource control inputs

Table 47, "NoiseSource control output" below lists and describes the NoiseSource control
output variable:

Name Type Default
Value

Description

OutGain float32 1.0 OutGain applies the amplitude gain control to the out-
put signal. If no external control is connected to
OutGain, the scale factor equals theOutGain value.
l Modifier: multiply (*)
l Modifier_default: 1.0

Table 47: NoiseSource control output

38 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 48, "NoiseSource internal parameters" below lists and describes NoiseSource internal
parameter variables:

Name Type Default
Value

Description

FilterType filter_type2 LowPass Determines the two-pole filter type applied to the
input signal:
l Lowpass
l Highpass
l Bandpass
l LowPassQ
l BandPassQ
l HighPassQ
l Notch

If no filtering is desired, FilterType should beOFF.
ThreeQ filters are amplitude-adjusted so the filter
has a unity gain at a roll-off frequency and maintains
this gain as the quality factor increases. Bandpass fil-
ters have lowpass and highpass poles at the same
roll-off frequency.

NoiseColor noise_color White Determines type of noise applied to input signal:
l White Noise: noise with a flat power spectral dens-
ity; the intensity is the same at all frequencies
within a given band.

l Pink Noise: a random signal whose amplitude
decreases as the frequency increases, pre-
serving constant audio strength per frequency
increment.

l Brown Noise: if the spectral density is pro-
portional to 1/ f 2, it has more energy at lower fre-
quencies, even more than pink noise.

Table 48: NoiseSource internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 39

Studio Components Reference Guide (Rev. T, Ver. 0)

2.15 PEnvelope
Summary: Parametric Envelope (PEnvelope) applies a parametric filter (PFilter) to an
input signal based on threeMathFunctions.

Description: PEnvelope applies the internal parametric filter to a given band of the input sig-
nal, which is determined by three parameters:

l Center frequency

l Bandwidth

l Desired gain

Table 49, "PEnvelope audio input and output" below lists and describes the PEnvelope audio
input and output variables:

Name Type Default Value Description

Audio Input

InSignal audio N/A Provides a connection to an audio signal for fil-
tering.

Audio Output

OutSignal audio N/A The output audio signal after it is filtered.

Table 49: PEnvelope audio input and output

Table 50, "PEnvelope control inputs" below lists and describes PEnvelope component's con-
trol input variables:

Name Type Default Value Description

Control float32 1.0 Determines what the input is going to be to
theMathFunctions.

Enable Boolean FALSE When TRUE, the filter is turned on.

ControlFunction N/A <Select> Defined inMathFunction.

Table 50: PEnvelope control inputs

40 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 51, "PEnvelope internal parameters" below lists and describes PEnvelope internal para-
meter variables:

Name Type Default
Value

Description

BandwidthFunction function <Select> Defined inMathFunction to set the filter band-
width in Hertz.

FreqFunction function <Select> Defined inMathFunction to set the filter fre-
quency.

GainFunction function <Select> Defined inMathFunction to set the filter gain.

Table 51: PEnvelope internal parameters

2.16 PFilter
Summary: Parametric Filter (PFilter) is a single-band parametric equalizer that allows you
to control the amplitude of a given band of the input signal.

Description: PFilter applies the internal parametric filter to a given band of the input signal
which is determined by three parameters:

l Center frequency

l Bandwidth

l Gain

Table 52, "PFilter audio input and output" below lists and describes PFilter audio input and
output variables:

Name Type Default Value Description

Audio Input

InSignal audio N/A InSignal is the connection to the signal to be used as
an input to the filter. The input signal comes from
another component in the model.

Audio Output

OutSignal audio N/A The filtered audio signal. If Enable is FALSE, it
passes original audio without filtering.

Table 52: PFilter audio input and output

Copyright © 2025 Advanced Simulation Technology inc. 41

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 53, "PFilter control inputs" below lists and describes PFilter control input variables:

Name Type Default Value Description

Bandwidth float32 1.0 Sets the bandwidth around its center fre-
quency. Units are in Hertz.

Enable Boolean FALSE When TRUE, turns the filter on.

Frequency float32 1.0 The center frequency. Units are in Hertz.

Gain_dB float32 1.0 Sets the gain value for the filter. Units are in
decibels (dB).

Table 53: PFilter control inputs

2.17 Playsound
Summary: Playsound plays digitally encoded sound files. Sounds that have no dynamically
varying elements except for overall volume level should be as fixed, offline recorded sound
files (e.g., missile launch). Host inputs do the following:

l Trigger playback

l Pause playback

l Set the start of file offset

l Set the end of file offset

l Adjust the overall output gain

l Set the file index number for grouped sound files

Description: Trigger and Pause control playback. The playback behavior is determined by
Loop and Playing that are set as part of the sound file definition outside of Playsound. If the
sound file is set for Loop, Playsound plays the file to its end, then starts at the beginning
again until Trigger is removed. If the sound file is set for PlayAll, Playsound plays the file to
its end when Trigger is removed.

If Playsound points to a sound group or library, SoundIndex determines which sound file
within the group or library is played. SoundIndex must be greater than 0 for a sound file
within a sound group to be played. Playsound does not play if SoundIndex is 0. If Trigger
value is TRUE, and SoundIndex increments, the sound file plays as if Trigger were TRUE
with the new SoundIndex value. If Trigger is TRUE and the SoundIndex increments before
the current file is done playing, PlayAll and Loop determine the behavior.

42 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Several levels of organization contain sound files. A library is a collection of groups. A group
is a collection of sounds or play files. Within Playsound, set LibraryId must be set and is not
modified by an external control (e.g., a host control). You can set the group ID locally within
Playsound or set it with an external control. SoundIndex determines which sound file within
the specified library and group is selected. A group value of 0 indicates that the sound file is
not in a group, but directly under the library equivalent toModel Builder organization.
OutGain controls the amplitude of the Playsound output. The output signal from a prerecor-
ded sound file can connect to any component that accepts audio as an input, such as aMixer.

Table 54, "Playsound audio output" below lists and describes the Playsound audio output
variable:

Name Type Default
Value

Description

Out audio N/A The output signal from Playsound, which may con-
nect to another component.

Table 54: Playsound audio output

Table 55, "Playsound control inputs" on the next page lists and describes Playsound control
input variables:

Name Type Default
Value

Description

BeginOffset float32 1.0 A value between 0.0 and 1.0 adjusts the start position
of the sound file. The sound must fully buffer for this
variable to function; ensure the sound buffer setting
is TRUE for the Sound Repository.

EndOffset float32 1.0 A value between 0.0 and 1.0 adjusts the end position
of the sound file. The position is calculated relative to
the end of the file (i.e., a value of 0.3 results in an end
position of 70 percent of the entire length of the file).
If EndOffset is less than the start offset after the
BeginOffset calculation is made, EndOffset results in
a value of 0.0. The sound must fully buffer for this vari-
able to function; ensure the sound buffer setting is
TRUE in the Sound Repository.

GroupID playsound_
group

0 Selects the group containing the sound file.

LibraryId playsound_
library

<Select> Selects the library containing the group and sound
file.

Copyright © 2025 Advanced Simulation Technology inc. 43

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

OutGain float32 1.0 Amplitude gain of the file replay source. If the gain
connection is blank, then the gain scale factor is the
gain value; otherwise, the gain is the scale factor mul-
tiplied by the output result of the control object.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: 0.0–Inf

Pause Boolean FALSE The PAUSE state. TRUE freezes the sound file play-
ing; FALSE allows play to continue from the current
file position. If no external variable is connected to
Pause, the modifier equals the local value.
l Modifier: XOR
l Modifier_default: FALSE

Randomize Boolean FALSE When TRUE, the Playsound signal has a counter
running and starts the sound at the counter position
when the sound triggers, resulting in a random start
position. In Sound Library, the sound file buffer must
be TRUE for Randomize to take effect.

SoundIndex playsound_
sound

0 Selects the sound file you want to play.

Trigger Boolean FALSE Triggers the sound file to play.

Table 55: Playsound control inputs

Table 56, "Playsound control output" below lists and describes the Playsound control output
variable:

Name Type Default
Value

Description

Playing Boolean FALSE TRUE if Playsound is actively playing audio.

Table 56: Playsound control output

44 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

2.18 Pulse
Summary: This signal source produces a PulseStream signal.

Note: A Pulse signal is similar to the square wave except it is limited to positive amplitudes.

Description: This signal source produces a PulseStream signal. Gain, Frequency and
MarkSpaceRatio can be controlled by input variables from elsewhere in the model or from
the host interface. Other signals in the model can modulate Frequency and Amplitude.

The frequency of the output pulse signal is determined by a combination of Frequency and
FreqModSignal. If no signal source is connected to FreqModSignal, only Frequency is used.
If a signal source is connected to the FreqModSignal, the actual frequency of the waveform is
varied according to the amplitude of the modulating signal. The degree to which the fre-
quency varies is controlled by FreqModDepth. Use the following formula to calculate the
actual frequency:

Frequency × [1 + (FreqModDepth × FreqModSignal)]

When FreqModSignal is Off, its amplitude is 0.0. When the waveform frequency is less than
or equal to 0,Wave does not generate a signal.

Gain and AmpModSignal determine the output pulse signal's actual amplitude. If AmpModSig-
nal has no signal source, only Gain determines the amplitude. If a signal source is connected
to AmpModSignal, the output pulse's amplitude varies according to the modulating signal's
amplitude. The modulation depth controls how much the amplitude varies. Use the following
formula to calculate the actual amplitude:

Gain × [1 + (AmpModDepth × AmpModSignal)]

When AmpModSignal is Off, its amplitude is 0.0. When the waveform amplitude is less than
or equal to 0, Pulse does not generate a signal.

Copyright © 2025 Advanced Simulation Technology inc. 45

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 57, "Pulse audio input and output" below lists and describes Pulse audio input and out-
put variables:

Name Type Default Value Description

Audio Input

AmpModSignal audio N/A The amplitude modulation signal controls the amp-
litude of the final output pulse. To avoid unpre-
dictable behavior care should be taken to ensure
that the product of modulation depth and mod-
ulation signal does not span a range greater than -
1.0 to +1.0.

FreqModSignal audio N/A The frequency modulation signal controls the
actual generated frequency. To avoid unpre-
dictable behavior, ensure that the product of mod-
ulation depth and modulation signal does not span
a range greater than -1.0 to +1.0.

Audio Output

OutSignal audio N/A OutSignal is the output signal from Pulse.

Table 57: Pulse audio input and output

Table 58, "Pulse control input" on the facing page lists and describes Pulse control input vari-
ables:

Name Type Default
Value

Description

AmpModDepth float32 1.0 Controls the effect of the frequency modulation
signal. Typical ranges are 0 to 1.0, when used in
conjunction with a unity gain modulation signal. If
no external variable is connected to
AmpModDepth, the scaler is FreqModDepth. To
avoid unpredictable behavior, ensure the product
of AmpModDepth and AmpModSignal does not
span a range greater than -1.0 to + 1.0.
l Modifier: multiply (*)
l Modifier_default: 0.0
l Range: 0.0–1.0

46 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Frequency float32 1.0 Frequency in Hertz of a wave generated by the
waveform synthesizer. The frequency is the num-
ber of oscillations made per second for the given
waveform. If no external variable is connected to
Frequency, the value of the scaler is used.
l Modifier: multiply (*)
l Modifier_default: 0.0
l Range: 0.0 – 1/2 × Sample Rate

FreqModDepth float32 1.0 Controls the effect of the frequency modulation
signal. If no external variable is connected to Fre-
qModDepth, the value of the scaler is the fre-
quency modulation depth. To avoid unpredictable
behavior, ensure the product of the modulation
depth and modulation signal does not span a
range greater than -1.0 to +1.0.
l Modifier: multiply (*)
l Modifier_default: 0.0
l Range: 0.0–1.0

Gain float32 1.0 Amplitude gain of the waveform. If no external
variable is connected toGain, the value of the
scaler is used.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: 0.0–Inf

MarkSpaceRatio float32 1.0 The pulse width or mark-to-space ratio of the
wave. The pulse is positive relative to the period
of the wave. (e.g., a value of 0.5 means in a given
period, the pulse output is +ve for half the time
and 0 for the other half). If no external variable is
connected toMarkSpaceRatio, the value of the
scaler is used.
l Modifier: multiply (*)
l Modifier_default: 0.5
l Range: 0.0–1.0

Table 58: Pulse control input

Copyright © 2025 Advanced Simulation Technology inc. 47

Studio Components Reference Guide (Rev. T, Ver. 0)

2.19 PulseSequence
Summary: PulseSequence can generate a repeating series of up to eight pulses of arbitrary
pulse width, pulse amplitude, and timing.

Description: PulseSequence is a signal component that generates a repeating series of up to
eight pulses of arbitrary pulse width, pulse amplitude, and timing. Typically, this signal is
used to frequency or amplitude modulate other signals. Part (a) of Figure 8, "PulseSequence
timing" below shows what the various parameters in PulseSequence. The paint count spe-
cifies the number of pulses, while the delays, amplitudes, and durations are specified as
shown. An external signal can modulate the pulse sweep time. How the pulses within the
sweep act depends on whether the paint times fixed or fractional. For fixed paint times, the
paint times and durations are defined in terms of the number of microseconds after the ini-
tiation of the sweep. Modulating the sweep time does not affect the pulse time. If the sweep
time cuts off a pulse, it does not generate.

Part (b) shows the same pulse sequence as part (a), but the sweep time shortens in fixed paint
time mode. For fractional paint times, the paint times and durations are defined in terms of
the fraction of the total sweep time. Modulating the sweep time compresses (or extends) the
pulses and moves them closer together or farther apart. Part (c) shows the same pulse
sequence as part (a), but the sweep time shortens in fractional paint time mode.

Figure 8, "PulseSequence timing" below shows PulseSequence timing:

Duration 1
Duration 2

Duration 3

A
m

p
lit

u
d

e
 1

Amplitude 2

Delay 1 Delay 2 Delay 3

Sweep Time

Example Shown: Paint

Count 3

(a) Signal

Sweep Time

(b) Effect on signal of sweep

modulation with fixed paint times

Sweep Time

(c) Effect on signal of sweep modulation

with relative paint times

Figure 8: PulseSequence timing

48 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 59, "PulseSequence audio inputs and output" below lists and describes PulseSequence
audio input and output variables:

Name Type Default Value Description

Audio Input

GainMod audio N/A Provides a connection to a signal that modulates
the amplitude of the PulseSequence.

SweepMod audio N/A Provides the audio input connection for the sweep
time modulation.

Audio Output

OutSignal audio N/A Audio output signal from PulseSequence.

Table 59: PulseSequence audio inputs and output

Table 60, "PulseSequence control inputs" on the next page lists and describes the
PulseSequence control input variables:

Name Type Default
Value

Description

Duration1–Dur-
ation8

float32 1.0 Provides each pulse's width in microseconds
(μs) (Fixed stage) or as fraction of sweep time
(Fractional stage). Pulse's resolution duration is
1/sample rate. A 48 kHz sample rate = 20.833 μs.

Gain float32 1.0 Amplitude gain of pulse. If blank, then theGain
scale factor is theGain value. Otherwise,Gain =
Scale Factor ×Output Result, whereOutput Res-
ult represents the output result of control objects.

GainModEn Boolean FALSE Control parameter enabling connection that
provides amplitude gain control from elsewhere
in model.

PaintCount uint8 0 Number of pulses in a sweep. Allowable values
are from 1 –8. A value of 0 disables
PulseSequence.

SweepModEn Boolean FALSE Control parameter enabling connection that
provides sweep modulation control from else-
where in model.

Copyright © 2025 Advanced Simulation Technology inc. 49

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

SweepModDepth float32 1.0 Provides modulation depth for sweep modulation
signal ranging from 0–1. If the modulation signal
has a gain of 1, then the sweep time (or fre-
quency) modulates between 0 and twice normal
value. A modulation depth of 0 means no sweep
modulation occurs.

SweepTime float32 1.0 Provides length of sweep containing pulses in
ms. For details, go to Figure 8, "PulseSequence
timing" on page 48. If PaintTimes is Fractional,
this variable is a frequency in Hertz. The sweep
time's timing resolution = 1/sample rate. A 48 kHz
sample rate has a 20.833 μs resolution.

Table 60: PulseSequence control inputs

Table 61, "PulseSequence internal parameters" below lists and describes PulseSequence
internal parameter variables:

Name Type Default
Value

Description

Amplitude1–
Amplitude8

float32 1.0 Provides each pulse's height, ranging from 0–1.

Delay1–
Delay8

float32 1.0 Delays pulse between the sweep and each pulse's
start. If the pulse delay puts the pulse outside of the
sweep, the pulse does not generate. Delay's res-
olution is 1/sample rate. An 8 kHz sample rate has a
125 ms resolution.

PaintTimes pulse_step_
mode

fixed If Fixed, sweep time, delay times and durations are
measured in microseconds. If Fractional, sweep
equals a frequency in Hertz; duration/delays are frac-
tion of sweep time.

Table 61: PulseSequence internal parameters

2.20 PulseStep
Summary: PulseStep can generate a repeating series of up to sixteen sequential pulses.

Description: PulseStep can generate a repeating series of up to sixteen sequential pulses of
arbitrary pulse width and pulse amplitude. The pulses follow immediately one after the other.
There is no space between them. Typically, this signal is used to frequency or amplitude mod-
ulate other signals.

50 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

The string of pulses can loop repeatedly with a specified loop time or can trigger in a "one-
shot" sequence. When looped, another signal can modulate the loop time. If the loop time is
modulated, it can shorten and lengthen the pulses (i.e., fractional step times) or keep it at a
constant length (i.e., fixed step times). At the end of the pulses, the output of the signal goes
to a constant amplitude, which is specified in AmplitudeOff (i.e., the amplitude when all the
pulses are off).

In addition, an external signal can modulate the signal gain:

Duration 1 Duration 2
Duration 3

Duration 4

Amplitude 1

Amplitude 2

Amplitude 3

Amplitude 4

Amplitude off

Time

A
m

p
lit

u
d

e

Figure 9: PulseStep signal

Table 62, "PulseStep audio inputs and output" below lists and describes PulseStep audio
input and output variables:

Name Type Default Value Description

Audio Inputs

GainMod audio View Scope Provides a connection to a signal that modulates
the amplitude of the pulse sequence.

LoopMod audio N/A Provides a connection to a control component that
gives the loop modulation depth.

Audio Output

OutSignal audio N/A Audio output signal from PulseStep.

Table 62: PulseStep audio inputs and output

Table 63, "PulseStep control inputs" on the next page lists and describes PulseStep control
input variables:

Name Type Default
Value

Description

Amplitude1–
Amplitude16

float32 1.0 Provides the amplitudes for the pulses. Go to Fig-
ure 9, "PulseStep signal" above.

Copyright © 2025 Advanced Simulation Technology inc. 51

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Duration1–Dur-
ation16

float32 1.0 Provides the durations for the pulses in micro-
seconds (i.e., fixed times) or as a fraction of the
sweep time (i.e., fractional times). Go to Figure 9,
"PulseStep signal" on the previous page.

Gain float32 1.0 Amplitude gain of the signal. IfGain is blank, then
the scale factor is theGain value. Otherwise,Gain
is calculated using the following formula:

Gain= Scale Factor ×Output Result

whereOutput Result represents the control com-
ponent's output result.

GainModEn Boolean FALSE Enables the gain modulation.

LoopModDepth float32 1.0 Provides the modulation depth for the loop mod-
ulation signal. This should be between 0 and 1. If
the modulation signal has a gain of 1, then the loop
time or frequency does modulate between zero
and twice its normal value. A modulation depth of 0
means that no loop modulation occurs.

LoopModEn Boolean FALSE Enables the loop modulation.

LoopTime (or fre-
quency)

float32 1.0 LoopTime (i.e., fixed mode) or LoopFrequency
(Hz) (i.e., fractional mode) determines how often
the pulses repeat themselves. If LoopTime is 0,
PulseStep goes into one-shot mode. In one-shot
mode, the pulses generate only StepCount
changes from 0 to a non-zero value. Otherwise,
AmplitudeOff determines the output.

StepCount uint8 0 An integer that provides the number of pulses. It
must be between 1 and 16. Setting the value to 0
turns PulseStream off, so the signal output is
AmplitudeOff. If pulse step signal is in one-shot
mode, then changing StepCount from zero to a
non-zero value triggers PulseStream to start.

Table 63: PulseStep control inputs

52 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 64, "PulseStep internal parameters" below lists and describes PulseStep internal para-
meter variables:

Name Type Default
Value

Description

AmplitudeOff float32 0.0 Provides the signal's amplitude when no pulses are
generated; occurs either because StepCount is zero
or in “dead time” at the end of a loop when no more
pulses exist.

PlayAll Boolean FALSE Parameter is in one-shot mode. In normal mode, if
the step count is toggled from 0 to a non-zero value
and back to zero, pulses stop playing immediately
when the StepCount returns to zero. In PlayAll,
pulses finish playing to the end of sequence.

StepMode pulse_step_
mode

fixed Determines whether pulse durations are given in
absolute times in microseconds (i.e., Fixedmode) or
as a fraction of the loop time (i.e., Fractionalmode).

When the loop time is modulated, Fractionalmode
causes pulses to shorten and lengthen in proportion
to the loop time. In Fixedmode, pulses remain at
their fixed durations when the loop time varies. If the
loop time becomes less than the sum of pulse dur-
ations in Fixedmode, end pulses are cut off.

Table 64: PulseStep internal parameters

2.21 PulseStream
Summary: The PulseStream signal source is a sophisticated signal source that generates a
stream of pulses. Like the Pulse signal, the pulses have an amplitude between 0 and 1.

Description: The PulseStream is typically used to frequency- or amplitude-modulate other
signals, providing time-varying tones. Figure 10, "PulseStream signal" on the next page
shows the pulse width and Pulse Repetition Interval (PRI). The PRI is usually the Main_PRI
modulated by some other signal or function. There are several ways to modulate the timing
between pulses. These different modulation methods are called Pulse types and are specified
in PulseType. Each PulseType has a number from 1 to 255 and a name. For each PulseType,
some of the parameters are ignored.

Copyright © 2025 Advanced Simulation Technology inc. 53

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 10, "PulseStream signal" below shows which PulseTypes use which parameters:

Figure 10: PulseStream signal

Figure 11, "Signal modulated" below shows how the first few PulseTypes work. The graph
shows the PRI as a function of time. The specific example is a triangle modulated
PulseStream (PulseType 3, Triangle.) Built into the object are sine, triangle, sawtooth, and
square wave modulations.

To use an arbitrary signal to modulate the PRI, select PulseType 9 (external) and enter a sig-
nal in Main_PRI. For the built-in modulation signals, enter a modulation frequency and mod-
ulation depth. For the external PulseType, the PRI_Mod_Freq is ignored and PRI_Mod_
Depth becomes a scale factor for the external modulation signal.

Figure 11, "Signal modulated" below shows the modulated signal:

Figure 11: Signal modulated

PulseType 101 to 150 are called dwel1-to-dwell 50. The spacing between pulses (PRI) is mod-
ulated in a step like fashion. The length of time on each step is given by the dwell time. The
number of steps is the dwell number + 1 (e.g., dwell5 has six steps). The steps are evenly
spaced, and the modulation depth gives their height.

54 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

The PRI time varies between Main_PRI × (1 – PRI_Mod_Depth) and Main_PRI × (1 + PRI_
Mod_Depth):

Figure 12: Dwell

Figure 13, "Random Dwell" on the next page shows the Random Dwell PulseType
(PulseTypes 151–199). The random dwell is the same as the dwell, except that instead of step-
ping sequentially through the levels it jumps randomly among them. The number of levels is
given by the Random Dwell number + 1 (i.e., Random Dwell 5 would jump through six dif-
ferent PRI modulation times).

In addition, a Random Dwell with no number (i.e., PulseType 199). With this PulseType, the
PRI time jumps randomly throughout its allowed range, staying at each PRI time for a dwell
time.

Copyright © 2025 Advanced Simulation Technology inc. 55

Studio Components Reference Guide (Rev. T, Ver. 0)

The allowed range for the random dwell is between Main_PRI × (1 – PRI_Mod_Depth) and
Main_PRI × (1 + PRI_Mod_Depth):

Figure 13: Random Dwell

The stagger PulseTypes operate differently from the other PulseType mentioned before.
Instead of modulating the PRI, up to eight PRI values define the pulse spacing. The number
of pulses in the stream equals the stagger number (e.g., Stagger 4 has four pulses per cycle).

Main_PRI determines the cycle length. The stagger PulseType is the only one to use the Stag-
ger PRI values. It ignores all of the PRI modulation variables, as shown in Figure 14, "Stag-
ger" below:

Figure 14: Stagger

56 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 65, " PulseStream types" below summarizes each PulseType and its corresponding para-
meters:

Number Name Stagger PRIs PRI Freq Mod. Depth Dwell Time

1 steady N N N N

2 sine N Y Y N

3 triangle N Y Y N

4 sawtooth N Y Y N

5 square N Y Y N

6–8 steady N N N N

9 external N N Y N

10–100 steady N N N N

101–150 dwell–dwell50 N N Y Y

151–198 random dwell1–
random dwell 48

N N Y Y

199 random dwell N N Y Y

200 stagger1 Y N N N

201–208 stagger1–stag-
ger8

Y N N N

209–219 stagger8 Y N N N

220–255 steady N N N N

Table 65: PulseStream types

Table 66, "PulseStream audio inputs and output" below lists and describes PulseStream
audio input and output variables:

Name Type Default Value Description

Audio Inputs

GainMod audio N/A Connection to a signal which modulates the amp-
litude of PulseStream.

PRI_Mod audio N/A Provides a connection to a signal that modulates
Main_PRI. Only PulseType 9 (external) uses this vari-
able.

Audio Outputs

OutSignal audio N/A OutSignal is the output signal from PulseStream,
which may connect to another component or be dir-
ected to an output highway.

Table 66: PulseStream audio inputs and output

Copyright © 2025 Advanced Simulation Technology inc. 57

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 67, "PulseStream control inputs" below describes PulseStream control input variables:

Name Type Default
Value

Description

DwellTime float32 1.0 Used by the dwell and random dwell pulse types
(numbers 101–199). It gives the value in seconds
that the PRI stays on a particular value.

Gain float32 1.0 The amplitude gain of the PulseStream signal.

GainModEnable Boolean FALSE Determines whether the amplitude gain mod-
ulation is enabled. Value is TRUE if a signal is con-
nected toGainMod.

Main_PRI float32 1.0 Provides the basic spacing between pulses, as
measured from the beginning of successive
pulses. This spacing can be modulated by the dif-
ferent pulse types. Different pulse types can mod-
ulate this spacing.

PRI_Mod_Depth float32 1.0 A number between 0 and 1 that determines the
modulation depth for theMain_PRImodulation. A
value of 0 indicates no modulation. The range of
PRI values is fromMain_PRI × (1 – PRI_Mod_
Depth) toMain_PRI × (1 + PRI_Mod_Depth).
Steady and Stagger PulseTypes ignore this vari-
able type.

PRI_Mod_Freq float32 1.0 For PulseTypes 2–5 (i.e., sine, triangle, sawtooth,
square), this variable provides the frequency of
the signal modulating theMain_PRI. It is ignored
for other PulseTypes.

PulseType uint8 0 Determines the type of PulseStream. The
PulseType is a number between 0 and 255. Each
number has an associated name that appears
next to the number. A PulseTypes of 0 turns off the
PulseStream.

PulseWidth float32 1.0 Provides the width of the pulses in the
PulseStream in microseconds.

Stagger_PRI_2–
Stagger_PRI_8

float32 1.0 Gives the stagger time in microseconds for the
Stagger PulseTypes. These values are only used
by the Stagger PulseTypes (i.e., 200–219).

Table 67: PulseStream control inputs

58 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 68, "PulseStream internal parameter" below lists and describes the PulseStream
internal parameter:

Name Type Default Value Description

PulseTypeName string OFF Displays the currently selected PulseTypes.

Table 68: PulseStream internal parameter

2.22 RecordReplay
Summary: With RecordReplay, you can record and replay digitally encoded sound files.
This component records any signal source within a model. It also features host control inputs
for controlling RecordReplay modes, file selection, file position, gain, and other parameters.

Description: RecordReplay lets you record an input signal and replay it from a prerecorded
file on the Telestra server hard drive. You might use RecordReplay for after-action review
(AAR) or in-flight replay of headset audio in the simulator.

Figure 15, "RecordReplay internal logic" below shows RecordReplay's internal logic:

Figure 15: RecordReplay internal logic

Copyright © 2025 Advanced Simulation Technology inc. 59

Studio Components Reference Guide (Rev. T, Ver. 0)

During RECORD mode, SignalIn audio enters RecordReplay, and the signal is multiplied by
Gain. The component stores the audio based on Command, Position, and Rate. It then saves
the file on the Telestra server in the /var/local/asti/recordreplay folder and assigns it a
GroupID and SoundIndex number.

GroupID and SoundIndex organize the sound files into groups and allow you to select a file
to replay. GroupID represents a top-level folder storing multiple SoundIndex files. These files
have the following name structure: library000_groupGroupID_indexSoundIndex.tsr.

During REPLAY mode, RecordReplay uses GroupID and SoundIndex to find the sound file.
To adjust the volume, it multiplies the SignalOut audio by the Gain value. SignalOut then
replays based on the Command, Rate, and Position parameters.

Position activates when Command leaves STOPPED (0) mode and begins RECORD (2) or
REPLAY (1). Its meaning depends on whether the Loop variable is TRUE or FALSE. When
Loop is FALSE, Position defines where the component starts recording or replaying in the
file. Units (i.e., positions) are measured in milliseconds (ms).

Table 69, "Position behaviors" below defines Position behaviors when Loop is TRUE or
FALSE:

Position Value Loop=FALSE Loop=TRUE

-1 and lower From the end of the file, the audio pos-
ition moves back the number of ms in the
negative position number. For example,
a -1 value produces a -1 ms offset.

From the stop position, the audio position
moves back the number of ms defined in
the negative position number. For
example, a -1 value results in a -1 ms off-
set.

0 The audio resumes from the stop pos-
ition.

The audio resumes from the stop pos-
ition.

2 The audio plays from the beginning of
the file. Set Rate to 48 kHz.

From the stop position, the audio position
moves forward the number of ms in the
positive position number. For example, a
17 value results in a +17 ms offset.

8 The audio plays from the beginning of
the file. Set Rate to 16 kHz.

16 The audio plays from the beginning of
the file. Set Rate to 8 kHz.

17 and higher From the beginning of the file, the audio
position moves forward the number of
ms defined in the positive position num-
ber. For example, a 17 value produces a
+17 ms offset.

Table 69: Position behaviors

60 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

To replay the audio, convert the Telestra sound recording (.tsr) file into waveform (.wav)
audio file format using the Telestra web interface. For more information about .tsr file con-
version in the Telestra web interface, go to "Sound Files" in the Telestra Web Interface User
Guide.

Telestra also includes a built-in tool that converts .tsr files into .wav files. To use this tool, go
to the Telestra server's command line, and run the tsr2wav.py script. To convert a single .tsr
file into a .wav file with a new name, run the following:

tsr2wav.py -i file_name.tsr -o new_file_name.wav -r NNNN

where file_name is the .tsr sound file (e.g., library001_group002_index0001.tsr), new_file_
name is the converted .wav audio file (e.g., ConvertedFile1.wav), and NNNN is the input
file's audio rate in hertz (Hz). The default rate is 8 kHz (i.e., 8000 Hz), but Telestra also sup-
ports 16 kHz and 48 kHz.

To convert all the .tsr files in a recording directory to .wav files, run the following:

tsr2wav.py -i directory_path/*.tsr -r NNNN -v

where directory_path is the location of the Telestra recordings (e.g., /var/-
local/asti/recordreplay). If the script does not specify an output file, the converted .wav files
use the original .tsr file names. The -v option provides additional information about the file
conversion process (e.g., completion percentage, processing time in seconds), which may be
useful if you are converting a large number of files.

To view a help message for the tsr2wav.py script, run tsr2wave.py -h.

Table 70, "RecordReplayaudio input and output" below lists and describes the RecordReplay
audio input and output variables:

Name Type Default Value Description

Audio Input

SignalIn audio N/A Audio linked to this variable is recorded. SignalIn is
unused in REPLAY mode. TheGain variable con-
trols the audio level.

Audio Output

SignalOut audio N/A Output signal of RecordReplay.Gain controls the
audio level and reads from the raw audio
RecordReplay file. The audio is only an output
when RecordReplay is in REPLAY mode.

Table 70: RecordReplayaudio input and output

Copyright © 2025 Advanced Simulation Technology inc. 61

Studio Components Reference Guide (Rev. T, Ver. 0)

../../../../../../Content/1-Telestra/Telestra Web Interface/Audio/Sound Files.htm
https://support.asti-usa.com/media/pdf/t4/rms4_ug.pdf
https://support.asti-usa.com/media/pdf/t4/rms4_ug.pdf

Table 71, "RecordReplay control input variables" on the facing page lists and describes
RecordReplay control input variables:

Name Type Default Value Description

Command uint8 0 RecordReplay contains three modes:
l 0 = STOP
l 1 = REPLAY
l 2 = RECORD

Commandmust transition through STOPmode
when it switches from RECORD to REPLAY or
vice versa.

Gain float32 1.0 Amplitude gain control for the RECORD or
REPLAY audio. This variable affects both SignalIn
and SignalOut.

GroupID uint16 0 Identifies the RecordReplay file group. Each file
is part of a specific group and may be stored on
the hard drive. To point to a specific file, identify
both theGroupID and the SoundIndex.

Length uint32 0 Maximum duration of a nonlooped recording or
the loop duration of a recording when Loop is
TRUE. Units are in seconds.

Loop Boolean FALSE Sets RecordReplay to continuously play or
record in a loop. If FALSE, it stops recording or
playing at the end of the file. If TRUE, RecordRe-
play starts recording or replaying at position 0
when it reaches the end of the file.

Position int32 0 Activates when Command leaves STOPPED (0)
mode and begins RECORD (2) or REPLAY (1)
mode. Its meaning depends on whether the Loop
variable is TRUE or FALSE. Units (i.e., positions)
are measured in milliseconds (ms).

Rate rate_hz rate_8kHz Record audio rate selection. Configuration
options are 8 kHz, 16 kHz, and 48 kHz. Rate
change requires a model reload.

62 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

Reset Boolean FALSE Reloads the current file resource. Reset only
works if RecordReplay is in STOPPEDmode. It
only triggers on the rising edge of the signal, when
it changes from FALSE to TRUE. You might use
Reset to swap or archive RecordReplay files on
the server at run time.

RecordReplay uses the following workflow:

1. Record a segment.
2. Stop recording.
3. Move the record files off the server (e.g., to

archive).
4. Set Reset to TRUE.
5. Start recording again, which creates a new

record file.

SoundIndex uint16 0 Sets the recording's index number, letting you
choose a specific sound file in a group. Every
recording must have a uniqueGroupID and
SoundIndex. To start replay, the value cannot be
0.

Table 71: RecordReplay control input variables

Copyright © 2025 Advanced Simulation Technology inc. 63

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 72, "RecordReplay control outputs" below lists and describes RecordReplay control
output variables:

Name Type Default
Value

Description

CurrentPosition int32 0 Displays the file's position in milliseconds (ms).
CurrentPosition updates asRecordReplay
records or replays audio. If RecordReplay stops
the audio, the variable holds its current value
until RecordReplay begins to replay or record.

CurrentFileLength int32 0 Displays the current file length in ms of the selec-
ted RecordReplay file.

FileMode player_state STOPPED Displays the stopped, recording, or playing state
of the file. It displays “RECORDING” when the
file is recording and “REPLAY” when the file is
replaying.

MaxFileLength int32 0 The maximum file length is in ms, based on
Length.

NewPosition int32 0 The point in the file where it resumes if it begins
recording or replaying.

PositionOffset int32 0 Matches the position input and displays in ms.

Table 72: RecordReplay control outputs

2.23 SimpleMixer
Summary: The SimpleMixer provides quick and easy mixing of up to 32 input signals.

Description: This no-frills mixer component is the fastest way to mix audio. Up to 32 signals
can be linked to the InSignals connection, and they are then mixed together equally. One over-
all OutGain is provided if the level needs to be moved up or down. SimpleMixer is most use-
ful when central processing unit (CPU) processing is at a premium or when individual audio
mixing controls are not necessary.

Table 73, "SimpleMixer audio input" below lists and describes the SimpleMixer audio input
variable:

Name Type Default Value Description

InSignals audio N/A An input connection for up to 32 audio signals.

Table 73: SimpleMixer audio input

64 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 74, "SimpleMixer control input and output" below lists and describes SimpleMixer
control input and output variables:

Name Type Default Value Description

Control Input

OutGain float32 1.0 Volume control for the output mix's overall
level.

Control Output

OutSignal audio N/A The audio output of SimpleMixer, containing
an equal amount of each input.

Table 74: SimpleMixer control input and output

2.24 Sequencer
Summary: The Sequencer plays audio files in a specified order.

Description: The Sequencer cycles through the indexes (i.e., sound files) when the trigger is
set to TRUE. The Sequencer drives the Playsound component.

Table 75, "Sequencer control inputs" on the next page lists and describes Sequencer control
input variables:

Name Type Default Value Description

Continuous Boolean TRUE Determines Sequencer behavior when Trig-
ger is held TRUE. If this flag is TRUE, Sequen-
cer continually steps through sequence. When
it reaches an empty entry, it returns to the first
entry and begins the sequence again. If flag is
FALSE, Sequencer does only one pass
through sequence. It stops sequencing when it
reaches an empty entry.

Delay uint32 1 Length of time (in seconds) between sequen-
cing cycles; Sequencer is in Continuous
mode.

Playall Boolean TRUE When trigger is turned off, Playall determines if
Sequencer stops immediately or plays to end
of file. Defaults to TRUE, which plays to end of
file.

Playing Boolean TRUE Link from Playsound; informs Sequencer that
the Playsound is playing.

Reset Boolean TRUE If reset flag is set, Sequencer is set to 0.0.

Copyright © 2025 Advanced Simulation Technology inc. 65

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

TriggerOut Boolean TRUE TRUE initiates sequencing. Continuousmode
flag determines how Sequencer behaves
when TriggerOut is FALSE.

Table 75: Sequencer control inputs

Table 76, "Sequencer control outputs" below lists and describes Sequencer control output
variables:

Name Type Default Value Description

GroupID playsound_
group

0 Selects groups in libraries.

SoundIdx playsound_
sound

0 Value of the file index to the played.

TriggerOut Boolean FALSE When set to TRUE, TriggerOut initiates
Sequencer.

Table 76: Sequencer control outputs

2.25 StereoWavRecord
Summary: StereoWavRecord records two audio channels, allows users to name sound files
in the component, and saves files in waveform (.wav) audio file format.

Description: StereoWavRecord records two audio channels and saves them to a file on the
Telestra server hard drive. Name allows you to name the sound file in the user interface. The
component also saves recordings as .wav files. Unlike RecordReplay, you can listen to audio
via third-party software without converting it from Telestra sound recording (.tsr) format. Ste-
reoWavRecord does not have built-in replay capabilities.

66 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 16, "StereoWavRecord internal logic" below shows the StereoWavRecord com-
ponent's internal logic:

Figure 16: StereoWavRecord internal logic

During RECORD mode, LeftInput and RightInput audio enters StereoWavRecord, and the
signals are multiplied by the Signal_Gain_Left and Signal_Gain_Right values. The com-
ponent stores the audio based on Command, Position, and Rate. It then saves the file on the
Telestra server in the default /var/local/asti/recordreplay folder and assigns it a SoundIndex
number. Name and SoundIndex organize the sound files into sections, allowing you to choose
a specific file. If you define a name, the file is called NameSoundIndex.wav (e.g., KCR003).
If Name is blank, the file is called library000_group000_indexSoundIndex.wav by default.

Caution: Before removing or copying files, stop RECORD mode. Otherwise, the header con-
tains missing values.

Position activates when Command leaves STOP (0) mode and begins RECORD (2) mode.
Position defines where StereoWavRecord starts recording in the file. Units (i.e., positions)
are measured in milliseconds (ms).

Copyright © 2025 Advanced Simulation Technology inc. 67

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 77, "Position behaviors" below defines Position behaviors:

Position Value Description
-1 and lower From the end of the file, the audio position moves back the number of ms

defined in the negative position number (e.g., a -1 value results in a -1 ms off-
set).

0 The audio resumes from the STOP position.

2 The audio plays from the beginning of the file; Ratemust be set to 48 kHz.

4 The audio plays from the beginning of the file; Ratemust be set to 16 kHz.

8 The audio plays from the beginning of the file; Ratemust be set to 8 kHz.

9 and higher From the beginning of the file, the audio position moves forward the number of
ms defined in the positive position number (e.g., a 9 value results in a +9 ms off-
set).

Table 77: Position behaviors

Table 78, "StereoWavRecord audio inputs" below lists and describes StereoWavRecord
audio input variables:

Name Type Default
Value

Description

LeftInput audio N/A Records audio from the left side of the headset.
This input is divided into two subcategories:
l Signal_Gain_Left: controls the volume for the
left side.

l Signal_Left: controls the audio input signal for
the left side.

RightInput audio N/A Records audio from the right side of the headset.
This input is divided into two subcategories:
l Signal_Gain_Right: controls the volume for the
right side.

l Signal_Right: controls the audio input signal for
the right side.

Table 78: StereoWavRecord audio inputs

68 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 79, "StereoWavRecord control inputs" below lists and describes StereoWavRecord
control input variables:

Name Type Default
Value

Description

Command uint8 0 StereoWavRecord contains two modes:
l 0 = STOP
l 2 = RECORD

Gain float32 1 Amplitude gain control for the RECORD audio.
Gain affects both LeftInput and RightInput.

Length uint32 0 Maximum duration of a nonlooped recording or the
loop duration of a recording. Units are in seconds.

Name string N/A Defines a name for the sound file. When this vari-
able is defined, the file name is called
NameSoundIndex.wav (e.g., KCR003.wav). When
blank, the file is called library000_group000_
indexSoundIndex.wav by default. For best results,
define a name for the file.

Position int32 0 Activates when Command leaves STOP (0) mode
and begins RECORD (2). Units (i.e., positions) are
measured in ms.

Rate rate_hz rate_8kHz Record audio rate selection. Configuration options
are 8 kHz, 16 kHz, and 48 kHz. Rate change
requires a model reload.

Reset Boolean FALSE Reloads the current file resource. Reset only works
if the component is in STOPmode. It only triggers
on the rising edge of the signal, when changing
from FALSE to TRUE. You might use Reset to
swap or archive StereoWavRecord files on the
server at run time.

The following describes the StereoWavRecord
workflow:

1. Record a segment.
2. Stop recording.
3. Move the record files off the server (e.g., to

archive).
4. Set Reset to TRUE.
5. Start the recording again, which creates a new

record file.

SoundIndex uint16 0 Sets the recording's index number.

Table 79: StereoWavRecord control inputs

Copyright © 2025 Advanced Simulation Technology inc. 69

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 80, "StereoWavRecord control outputs" below lists and describes StereoWavRecord
control output variables:

Name Type Default
Value

Description

CurrentPosition int32 0 Displays the file's position in milliseconds. Cur-
rentPosition updates asStereoWavRecord
records audio. If the component stops the audio,
the variable holds its current value until the com-
ponent begins to record.

CurrentFileLength int32 0 After a recording, displays the current file length
in ms of the selected StereoWavRecord file.

FileMode player_state STOP Displays the stopped or recording state of the
file. Displays “RECORDING” when the file is
recording.

MaxFileLength int32 0 Displays the maximum file length in ms.
MaxFileLength is based on Length.

NextPosition int32 0 The point in the file where it resumes if it begins
recording.

PositionOffset int32 0 Matches the position input and displays in ms.

Table 80: StereoWavRecord control outputs

2.26 VolumeControl
Summary: VolumeControl provides a host control for overall volume level and muting in a
model.

Description: VolumeControl sets the main volume level. WhenMute is TRUE, the res-
ultant volume level is 0. Table 81, "VolumeControl control inputs and output" below lists and
describes VolumeControl control input and output variables:

Name Type Default Value Description

Control Inputs

Mute Boolean FALSE WhenMute is TRUE, it sets the volume level to 0.

Volume float32 1.0 Sets main volume, overall controlled by host.

Control Output

VolumeLevel float32 1.000000 Resulting output of the volume setting.

Table 81: VolumeControl control inputs and output

70 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

2.27 Vox
Summary: Vox allows voice-activated or press-to-talk (PTT) control over an audio input sig-
nal. An optional filter may be applied to the input signal. If the filtered input signal level
exceeds the Vox threshold level, Vox outputs the signal. Once the input signal level drops
below the threshold, Vox remains active for the period of time specified by the Vox delay,
and then it stops the output signal. Alternately, Vox can operate in PTT mode, where Vox out-
puts a signal only when PTT is set.

Description: Vox operates on an input signal. The source of the input signal is external audio
that is connected to the Vox via InSignal. Vox first applies a filter (if enabled) to the input sig-
nal. The output from the filter is active only if the input signal source is active. The filter is
controlled by the following parameters:

l FilterType

l FilterFreq

l FilterQ

FilterType determines the type of filter applied to the input signal:

l OFF

l Lowpass

l Highpass

l Bandpass

l Notch

If Type is set to Off, no filtering is applied to the input signal. FilterFreq (in Hertz) provides
the roll-off frequency of the filter. The meaning of the FilterFreq depends on the filter type
as follows:

l Filter type frequency meaning

l Off ignored

l Lowpass upper bound frequency

l Highpass lower bound frequency

l Bandpass center frequency with bandwidth controlled by FilterQ

FilterQ is the filter quality factor, which effectively determines the filter roll-off for lowpass
and highpass filters and the filter bandwidth for bandpass filters. FilterQ is inversely pro-
portional to the filter roll-off or bandwidth.

Copyright © 2025 Advanced Simulation Technology inc. 71

Studio Components Reference Guide (Rev. T, Ver. 0)

The filter parameters derive the filter coefficients for a two-pole IIR filter. If FilterQ is 0 or
less, use a very low, non-zero value for the k calculation. If the Filter Type is Off, the filter
output signal is the input signal.

If the filter output is active, Vox applies Vox or PTT control to the filtered signal. Vox
includes VoxEnable and PTT. VoxEnable and PTT are specified by an externally controlled
variable and an XOR logic gate control. XOR logic is applied to the external variable value
and the gate control to derive a final value for the VoxEnable and PTT flags. If no external
variable is connected, the value of the logic gate variable becomes the input value.

These two Boolean inputs control when the Vox outputs audio as follows:

1. VoxEnable = FALSE; PTT = FALSE – No Output

2. VoxEnable = TRUE; PTT = FALSE – Output active only when signal level exceeds
the threshold

3. VoxEnable = FALSE; PTT = TRUE – Output active always (regardless of signal
level)

4. VoxEnable = TRUE; PTT = TRUE – Output active always (regardless of signal level)

For Case 2, if the signal level drops below the threshold, Vox continues to output a signal for
the duration specified in VoxDelay. The threshold level is specified by the Vox level control,
which consists of a connection to an external control variable and an offset. The value of the
external variable is added to the offset to derive the Vox threshold level. If no external vari-
able is connected, the value for the offset becomes the Vox threshold level.

An amplitude gain control is applied to the Vox output. This output gain control consists of a
connection to an external controlled variable and a scale factor. The value of the external vari-
able is multiplied by the scale factor to derive the output gain. If no external variable is con-
nected, the value for the scale factor becomes the signal gain.

Vox output audio should only be active if both of the following conditions are TRUE:

1. The output from the filter is active.

2. The derived output gain (External Variable × Scale Factor) is greater than 0.0.

Summary View contains two variables: FilterSignalLevel and OutSignalLevel:

l FilterSignalLevel: reflects the Root Mean Squared signal power at the Vox output.

l OutSignalLevel: the Root Mean Squared signal power of the output from the Vox com-
ponent. This variable is only non-zero if the component output is active.

The FilterSignalLevel can be non-zero while the OutSignalLevel is zero. This would happen
if the filtered signal does not exceed the Vox threshold. If the output signal is active, both
variables have the same value.

72 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 82, "Vox audio input and output" below lists and describes Vox input and output vari-
ables:

Name Type Default Value Description

Audio Input

InSignal audio N/A InSignal is the input signal into Vox. The filter and the
Vox logic is applied to this signal to determine the out-
put signal.

Audio Output

OutSignal audio N/A OutSignal is the output signal from Vox.

Table 82: Vox audio input and output

Table 83, "Vox control inputs" on the next page lists and describes Vox control input vari-
ables:

Name Type Default
Value

Description

OutGain float32 1.0 OutGain applies amplitude gain control to the primary
output signal. If no external control is connected to
OutGain, the scale factor is theOutGain value.
l Modifier: multiply (*)
l Modifier_default: 1.0

PTT Boolean FALSE In press-to-talk (PTT) mode, the input signal is the
output only when PTT is set. In VOXmode, Vox
behaves as if in HOT MIC mode (i.e., it always out-
puts the signal). If no external control is connected to
PTT, the exclusive-or (XOR) modifier is the PTT
value.
l Modifier: XOR
l Modifier_default: FALSE

VoxEnable Boolean FALSE VoxEnable is the control variable for Voxmode. If
this variable is FALSE, Vox is set for PTTmode. If no
external control is connected to VoxEnable, the XOR
modifier is the VoxEnable value.
l Modifier: XOR
l Modifier_default: TRUE

Copyright © 2025 Advanced Simulation Technology inc. 73

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

VoxLevel float32 0.0 VoxLevel provides the Vox threshold level. When
Voxmode is enabled, the input signal level is com-
pared to VoxLevel and fed through only if it exceeds
it. If no external control is connected to VoxLevel, the
offset is used as the VoxLevel value.
l Modifier: add (+)
l Modifier_default: 0.002

Table 83: Vox control inputs

Table 84, "Vox control outputs" below lists and describes Vox control output variables:

Name Type Default
Value

Description

FilterSignalLevel float32 0.0 Indicates the sound level of the filtered signal.

OutSignalLevel float32 0.0 The same as the filtered signal level. When the
Vox is not outputting audio, the value is 0.

Table 84: Vox control outputs

Table 85, "Vox internal parameters" on the facing page lists and describes Vox internal para-
meters:

Name Type Default
Value

Description

FilterFreq float32 2000.0 FilterFreq (in Hertz) provides the roll-off frequency of
the filter. For lowpass filters, FilterFreq acts as an
upper bound frequency. For highpass filters, Fil-
terFreq acts as a lower bound frequency. For band-
pass, FilterFreq acts as a center frequency. FilterQ
determines the filter bandwidth.
l Range: (0.0 – Sample Rate) ÷ 2

FilterQ float32 0.707100 FilterQ is the filter quality factor, which determines
the filter roll-off for lowpass and highpass filters. The
bandpass's filter bandwidth must be greater than or
equal to 0.

74 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

FilterType filter_type2 LowPass Determines the filter type applied to the input signal
(e.g., Lowpass, Highpass, Bandpass). Filtering
occurs before Vox compares the Vox and signal
levels. Turn FilterType off to disable filtering.

Range:
l Off
l LowPass
l BandPass
l HighPass
l LowPassQ
l BandPassQ
l HighPassQ
l Notch

Adjust the three FilterQ's amplitudes so the filter has
unity gain at the roll-off frequency and maintains this
gain as the quality factor increases. The bandpass fil-
ters' lowpass and highpass poles are at the same
roll-off frequency.

VoxDelay float32 2.0 VoxDelay is the amount of time (in seconds) after the
input signal level falls below the Vox level that Vox
continues to output audio.

Table 85: Vox internal parameters

2.28 Wave
Summary: This signal source produces a waveform signal, which may be sine, sawtooth, tri-
angle, or square.

Description: This signal source produces a waveform signal. Both amplitude and frequency
can be controlled by input variables from elsewhere in the model or from the host interface.
The frequency can also be modulated by another signal within the signal processor, with the
model having control over the depth of modulation. The waveform signal type can be sine,
sawtooth, triangle or square.

The waveform frequency is determined by a combination of Frequency and FreqModSignal.
If no signal source is connected to the FreqModSignal, only Frequency is used.

If a signal source is connected to FreqModSignal, the actual frequency of the waveform var-
ies according to the amplitude of the modulating signal. The degree to which the frequency
varies is controlled by the modulation depth.

Copyright © 2025 Advanced Simulation Technology inc. 75

Studio Components Reference Guide (Rev. T, Ver. 0)

The following calculation determines the frequency:

ActualFreq = Frequency × [1 + (FreqModDepth × FreqModSignal)]

where FreqModSignal is the amplitude of the modulating signal. A modulating signal with
an active state of OFF should be treated as an amplitude of 0.0.

When the waveform frequency is less than or equal to 0,Wave does not generate a signal.
The amplitude of the final signal is controlled by Gain. When Gain is less than or equal to 0,
Wave does not generate a signal.

When the waveform type is square, there is an additional control for the Mark/Space ratio.
This ratio is the proportion of time, the square wave amplitude is positive to the time the
square wave amplitude is negative in a given cycle. If the waveform type is not square, the
Mark/Space ratio is ignored.

Table 86, "Wave audio inputs" below lists and describes theWave audio input variable:

Name Type Default
Value

Description

FreqModSignal audio N/A Controls the actual generated frequency via the fol-
lowing formula:

ActualFreq = Frequency × [1+ (FreqModDepth x
FreqModSignal)]

It usually falls between 0–1.0, when used in con-
junction with a unity gain modulation signal.

Important: To avoid unpredictable behavior,
ensure that the product of modulation depth and
modulation signal does not span a range greater
than -1.0 to +1.0.

Table 86: Wave audio inputs

Table 87, "Wave audio outputs" below lists and describes theWave audio output variable:

Name Type Default
Value

Description

OutSignal audio N/A OutSignal is the output signal fromWave, which
maybe connected to another component or directed
to an output gateway.

Table 87: Wave audio outputs

76 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 88, "Wave control inputs" below lists and describesWave control input variables:

Name Type Default
Value

Description

Frequency float32 1.0 Frequency (in Hertz) of the wave generated by the
waveform synthesizer. Frequency equals the num-
ber of oscillations per second for the given wave-
form. If no external variable is connected to
Frequency, the scalar value is used.
l Modifier: multiply (*)
l Modifier_default: 0.0
l Range: 0.0 – 1/2 × Sample Rate

FreqModDepth float32 1.0 The frequency modulation depth value controls
the effect of the frequency modulation signal:

ActualFreq = Frequency × [1+ (FreqModDepth ×
FreqModSignal)]

Usually falls in 0–1.0 range, when used in con-
junction with unity gain modulation signal. If no
external variable is connected to FreqModDepth,
the scalar value is used as frequency modulation
depth. To avoid unpredictable behavior, ensure
modulation depth product and modulation signal
does not span a range greater than -1.0 to +1.0.
l Modifier: multiply (*)
l Modifier_default: 0.0
l Range: 0.0–1.0

Gain float32 1.0 Amplitude gain of the waveform. If no external
variable is connected toGain, scalar value is
used.
l Modifier: multiply (*)
l Modifier_default: 0.0
l Range: 0.0–Inf

MarkSpaceInput float32 1.0 MarkSpaceInput controls the duration of the
square wave, plus the side relative to the wave
period (e.g., value of 0.5 means in a given period,
the square wave output is +ve for 1/2 time and -ve
for other half). If no external variable is connected
toMarkSpaceInput, the scalar value is used.
l Modifier: multiply (*)
l Modifier_default: 0.5
l Range: 0.0–1.0

Table 88: Wave control inputs

Copyright © 2025 Advanced Simulation Technology inc. 77

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 89, "Wave internal parameters" below lists and describesWave internal parameter vari-
ables:

Name Type Default
Value

Description

MarkSpaceUnits width_units DUTY_
CYCLE

This parameter is for the pulse and square inverse
and defines the units for mark space input. The
duty cycle range is 0–1. The value can also be set
in seconds.

Wavetype waveshape sine The type of the generated waveform. Range
includes the following:
l Off
l Sawtooth
l Triangle
l Sine
l Square

Table 89: Wave internal parameters

78 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

3.0 AudioIO
The AudioIO components retrieve audio from the Highway 3D Service. Typically, these
components directly link to one of the hardware components (e.g., ACU2). The AudioIO
components include the following:

l Headphone3DOut

l HighwayOut

l SpeakerOut

These components are described in the Section 9.0, "Highway 3D Service" on page 159.

Copyright © 2025 Advanced Simulation Technology inc. 79

Studio Components Reference Guide (Rev. T, Ver. 0)

4.0 CommPanel
The following section details CommPanel and the objects within them. CommPanel com-
ponents include the following:

l CommPanel4

l CommPanel8

l CommPanel16

l CommPanel32

l CommPanel8Stereo

l StereoCommPanel

4.1 CommPanel 4, 8, 16, 32
Summary: Simulation of a generic communication control panel that links a single operator
with up to 32 assets. A facility is provided for separate control of input, output, and sidetone
routing to and from assets. Assets are linked to CommPanel components using the intercom
service.

Description: Although many assets may be connected, only a single channel needs to be
described since the remainder are simply copies of the first. The basic concept of the Com-
mPanel is the connection of an operator input, usually microphone, often through a Vox
object, through a press-to-talk (PTT) gate and gain stage with an optional control input and
scaling factor via a control selector switch (i.e., InControl) to a bidirectional intercom channel
provided by the Telestra intercom service. Connect the intercom channel to various other
audio object types. The intercom channel can also function as a basic intercom that provides
standard intercom voice communication.

The input is active if PTT is set (either by default value or external control), and the input
audio is tagged as Active_Tx. The return signal from the service passes to the operator via an
output control selector via an optional receive gain control and scaling factor.

CommPanel determines how sidetone is computed for each asset, depending on the setting of
the SidetoneLocal mask. If the bit corresponding to a particular channel is set, then the gain is
computed locally within CommPanel. Otherwise, sidetone is a function of the externally con-
nected asset. SidetoneLocal is usually used for intercom connections between operators, while
remote sidetone is used for connections to radio objects. Remote sidetone causes operators
sharing an asset to hear each other's sidetone, while SidetoneLocal causes other operators to
hear only transmitted sidetone.

80 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Normal operation for the SideGainControl byte is for it to be AND’ed with the OutControl
byte. CommPanelcan connect to Tx/Rx intercom service channels, typically voice signals to
or from radios and intercom between crew, or Rx-only signals (e.g., Nav receivers, tone
sources).

Default operation is full duplex. Asset connection duplex behavior always forces local beha-
vior, so connections to a normal radio forces half-duplex operation. OutGain and scaling
factor determines the overall receive signal gain. SidetoneGain and scaling factor determine
the overall sidetone signal gain. The power connection state determines if the object is oper-
ational. All operation is disabled when Power is turned off (FALSE).

Table 90, "CommPanel audio input" below lists and describes the CommPanel audio input
variable:

Name Type Default Value Description

InSignal audio N/A Input audio signal that CommPanel trans-
mits.

Table 90: CommPanel audio input

Table 91, "CommPanel audio outputs" below lists and describes CommPanel audio output
variables:

Name Type Default Value Description

OutSignal audio N/A Output audio signal generated by mixing all
the received signals from the actively selec-
ted IC buses.

SideSignal audio N/A Sidetone audio signal generated by mixing
all the received side tones from the actively
selected IC buses.

Table 91: CommPanel audio outputs

Table 92, "CommPanel4, 8, 16, 32 control inputs" on page 83 lists and describes control
inputs for CommPanels 4, 8, 16, and 32:

Name Type Default Value Description

InControl byte 255 Selects the intercom buses to transmit the
InSignal (i.e., bit mask). For example, a
value of 1 transmits on Sig1, a value of 2 on
Sig2, 4 on Sig3, 8 on Sig4, 16 on Sig5, and
255 on all buses.
l Modifier: and (&)
l Modifier_default: 255
l Range: 0–255

Copyright © 2025 Advanced Simulation Technology inc. 81

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

InGain float32 1.0 Scales the InSignal audio signal.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: 0.0–1.0

OutControl byte 255 Selects the buses to receive audio from (bit
mask). For example, a value of 1 receives
from Sig1, a value of 2 on Sig2, 4 on Sig3, 8
on Sig4, 16 on Sig5, and 255 on all buses.
l Modifier: and (&)
l Modifier_default: 255
l Range: 0–255

OutGain float32 1.0 Volume control that scales the received
OutSignal obtained after mixing the
received signals from each intercom bus.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: 0.0–1.0

Power Boolean FALSE Controls the power of the CommPanel.
l Modifier: XOR
l Modifier_default: TRUE

PTT Boolean TRUE for Com-
mPanel4;

FALSE for oth-
ers

Controls CommPanel audio transmission.
l Modifier: XOR
l Modifier_default: FALSE for Com-
mPanel4; TRUE for all others

SideControl byte 255 Selects the buses from which to receive the
sidetone signal. For example, a value of 1
receives from Sig1, a value of 2 from Sig2,
from Sig3, 8 from Sig4, 16 from Sig5, and
255 from all buses.
l Modifier: and (&)
l Modifier_default: 255
l Range: 0–255

SidetoneGain float32 0.6 Scales the side (i.e., sidetone) signal
obtained after mixing the received sidetone
from each IC bus.

Sig1–SigN id UNASSIGNED Selects the intercom bus handle.

82 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

Sig1_RxGain–
SigN_RxGain

float32 1.0 Volume control that scales the signal
received from each intercom bus prior to mix-
ing.

Table 92: CommPanel4, 8, 16, 32 control inputs

Table 93, "CommPanel internal parameters" below lists and describes CommPanel internal
parameter variables:

Name Type Default
Value

Description

SideGainControl byte 255 Selects which side tones are affected by the
CommPanel's received signal gains. When the
bit is high, the sidetone volume for the intercom
bus is multiplied by the appropriate SigN_
RxGain. Also when the bit is high, the SideCon-
trol value for the intercom bus becomes the
logical AND of SideControl andOutControl.

SidetoneLocal byte 0 Selects which side tones are generated locally
instead of remotely. If more than one Com-
mPanel is sharing the same intercom bus, this
control determines if the sidetone is sent to the
other panels.

Table 93: CommPanel internal parameters

4.2 CommPanel8Stereo
Summary: Simulation of a stereo communication control panel that links a single operator
with up to eight assets. A facility is provided for separate control of input, output, and
sidetone routing to and from assets. Assets are linked to CommPanel using the intercom ser-
vice. CommPanel8Stereo has separate controls for left and right output and sidetone signals.

Description: This is a generic CommPanel component with stereo function. For more
information, go to Section 4.0, "CommPanel" on page 80.

Table 94, "CommPanel8Stereo audio input" below describes the CommPanel8Stereo audio
input variable:

Name Type Default
Value

Description

InSignal audio N/A The input audio signal CommPanel trans-
mits.

Table 94: CommPanel8Stereo audio input

Copyright © 2025 Advanced Simulation Technology inc. 83

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 95, "CommPanel8Stereo audio outputs" below lists and describes CommPanel8Stereo
audio output variables:

Name Type Default
Value

Description

OutSignalL audio N/A Left output audio signal generated by mixing
all the received signals from the actively selec-
ted IC buses.

OutSignalR audio N/A Right output audio signal generated by mixing
all the received signals from the actively selec-
ted IC buses.

SideSignalL audio N/A Left sidetone audio signal generated by mix-
ing all the received sidetone signals from the
actively selected IC buses.

SideSignalR audio N/A Right sidetone audio signal generated by mix-
ing all the received sidetone signals from the
actively selected IC buses.

Table 95: CommPanel8Stereo audio outputs

Table 96, "CommPanel8Stereo control inputs" on the facing page lists and describes Com-
mPanel8Stereo control input variables:

Name Type Default Value Description

Power Boolean TRUE Controls CommPanel power.

PTT Boolean TRUE Controls CommPanel audio transmission.

InGain float32 1.0 Scales InSignal audio signal.

OutGain float32 1.0 Mixes received signals from each intercom
bus and scales receivedOutSignal.

SidetoneGain float32 0.600 Mixes received sidetone from each IC bus,
and scales SideSignal.

InControl byte 255 Selects intercom buses to transmit InSignal
(i.e., bit mask). Value 1 transmits on Sig1,
value 2 on Sig2, 4 on Sig3, 8 on Sig4, 16 on
Sig5, and 255 on all buses.

OutControlL byte 255 Selects buses receiving Rx signals routed to
OutSignalL Value 1 receives on Sig1, value
2 on Sig2, 4 on Sig3, 8 on Sig4, 16 on Sig5,
and 255 on all buses.

84 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

OutControlR byte 255 Selects buses receiving Rx signals routed to
theOutSignalR. Value 1 receives on Sig1,
value 2 on Sig2, 4 on Sig3, 8 on Sig4, 16 on
Sig5, and 255 on all buses.

SideControlL byte 255 Selects buses receiving sidetone signal
routed to SideSignalL (e.g., value 1 receives
on Sig1, value 2 on Sig2, 4 on Sig3, 8 on
Sig4, 16 on Sig5, and 255 on all buses).

SideControlR byte 255 Selects buses receiving sidetone signal
routed to SideSignalR. Value 1 receives on
Sig1, value 2 on Sig2, 4 on Sig3, 8 on Sig4,
16 on Sig5, and 255 on all buses.

SidetoneLocal byte 0 Selects which sidetone signals are gen-
erated locally vs. remotely. If more than one
CommPanel is sharing the same intercom
bus, this control determines if other panels
receive sidetone.

SideGainControl byte 255 Selects which sidetone signals are affected
by the CommPanel’s received signal gains.
When the bit is high, the sidetone volume for
intercom bus is multiplied by the appropriate
SigN_RxGainL or SigN_RxGainR, and by
OutGain bytes, which is masked byOutCon-
trol bytes.

Sig1_RxGainL–Sig8_
RxGainL

float32 1.0 The volume control scaling signal received
from each intercom bus before mixing into
left output signal.

Sig1_RxGainR–Sig8_
RxGainR

float32 1.0 The volume control scaling signal received
from each intercom bus before mixing into
the right output signal.

Sig1–Sig8 id UNASSIGNED Selects the intercom bus handle.

Table 96: CommPanel8Stereo control inputs

Copyright © 2025 Advanced Simulation Technology inc. 85

Studio Components Reference Guide (Rev. T, Ver. 0)

4.3 StereoCommPanel
ASTi created StereoCommPanel for a specific program. Contact ASTi for details.

Table 97, "StereoCommPanel audio input" below lists and describes the StereoCommPanel
audio input variable:

Name Type Default
Value

Description

InSignal audio N/A Input audio signal that the CommPanel transmits.

Table 97: StereoCommPanel audio input

Table 98, "StereoCommPanel audio outputs" below lists and describes StereoCommPanel
audio output variables:

Name Type Default
Value

Description

OutSignalL audio N/A Left output audio signal generated by mixing all the
received signals from the actively selected IC buses.

OutSignalR audio N/A Right output audio signal generated by mixing all the
received signals from the actively selected IC buses.

OutSignalM audio N/A Monitor output audio signal generated by mixing all
the received signals from the actively selected IC
buses.

SideSignalL audio N/A Left sidetone audio signal generated by mixing all the
received sidetone signals from the actively selected
IC buses.

SideSignalR audio N/A Right sidetone audio signal generated by mixing all
the received sidetone signals from the actively selec-
ted IC buses.

SideSignalM audio N/A Monitor sidetone audio signal generated by mixing all
the received sidetone signals from the actively selec-
ted IC buses.

Table 98: StereoCommPanel audio outputs

86 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 99, "StereoCommPanel control inputs" on page 89 lists and describes Ste-
reoCommPanel control input variables:

Name Type Default
Value

Description

InControlL byte 255 Selects intercom buses to transmit InSignal (i.e.,
bit mask). Value 1 transmits on Sig1, value 2 on
Sig2, value 4 on Sig3, value 8 on Sig4, 255 on all
IC buses. Sidetone feeds to SideSignalL.

InControlR byte 255 Selects intercom buses to transmit InSignal (i.e.,
bit mask). Value 1 transmits on Sig1, value 2 on
Sig2, value 4 on Sig3, value 8 on Sig4, 255 on all
IC buses. Sidetone feeds to SideSignalR.

InGain float32 1.0 Scales InSignal audio signal.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: 0.0–1.0

OutControlL byte 255 Selects intercom buses to receive from (i.e., bit
mask). Value 1 receives from Sig1, 2 from Sig2, 4
from Sig3, 8 on Sig4, 255 from all IC buses. Mixed
audio feeds toOutSignalL.

OutControlR byte 255 Selects intercom buses to receive from (i.e., bit
mask). Value 1 receives from Sig1, 2 from Sig2, 3
from Sig4, 8 from Sig4, 255 from all IC buses.
Mixed audio feeds toOutSignalR.

OutControlM byte 255 Selects intercom buses to receive from (i.e., bit
mask). Value 1 receives from Sig1, 2 from Sig2, 4
from Sig3, 8 from Sig4, 255 from all IC buses.
Mixed audio feeds toOutSignalM.

OutGainL float32 1.0 Scales the receivedOutSignalL signal obtained
after mixing the received signals from each IC bus.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: 0.0–1.0

OutGainR float32 1.0 Scales the receivedOutSignalR signal after mixing
the received signals from each IC bus.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: 0.0–1.0

Copyright © 2025 Advanced Simulation Technology inc. 87

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

OutGainM float32 1.0 Scales the receivedOutSignalM signal after mixing
the received signals from each IC bus.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: 0.0–1.0

Power Boolean FALSE Controls the power bus of the CommPanel.
l Modifier: XOR
l Modifier_default: TRUE

PTTL Boolean FALSE Controls CommPanel audio transmission.
l Modifier: XOR
l Modifier_default: TRUE

PTTR Boolean FALSE Controls CommPanel audio transmission.
l Modifier: XOR
l Modifier_default: TRUE

SideControlL byte 255 Selects the intercom buses to receive side tones
from (i.e., bit mask). Value 1 receives from Sig1, 2
from Sig2, 4 from Sig3, 8 from Sig4, 255 from all
IC buses. Mixed audio feeds to SideSignalL.

SideControlR byte 255 Selects intercom buses to receive side tones from
(i.e., bit mask). Value 1 receives from Sig1, 2 from
Sig2, 4 from Sig3, 8 from Sig4, 255 from all IC
buses. Mixed audio feeds to SideSignalR.

SideControlM byte 255 Selects intercom buses to receive side tones from
(i.e., bit mask). Value 1 receives from Sig1, 2 from
Sig2, 4 from Sig3, 8 from Sig4, 255 from all IC
buses. Mixed audio feeds to SideSignalM.

SidetoneGainL float32 1.0 Scales sidetone signal from SideSignalL audio:
l Modifier: multiply (*)
l Modifier_default: 0.6
l Range: 0.0–1.0

SidetoneGainR float32 1.0 Scales sidetone signal for SideSignalR audio.
l Modifier: multiply (*)
l Modifier_default: 0.6
l Range: 0.0–1.0

88 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

SidetoneGainM float32 1.0 Scales sidetone signal for SideSignalM audio.
l Modifier: multiply (*)
l Modifier_default: 0.6
l Range: 0.0–1.0

Sig1_RxGainL–
Sig8_RxGainL

float32 1.0 Scales received signals from each IC bus for
OutSignalL audio.

Sig1_RxGainR–
Sig8_RxGainR

float32 1.0 Scales received signals each IC bus forOutSig-
nalR audio.

Sig1_RxGainM–
Sig8_RxGainM

float32 1.0 Scales received signals from each IC bus for
OutSignalM audio.

Table 99: StereoCommPanel control inputs

Table 100, "StereoCommPanel internal parameters" below lists and describes Ste-
reoCommPanel internal parameter variables:

Name Type Default
Value

Description

SideGainControlL byte 255 Selects which left side tones are affected by the
CommPanel's received signal gains.

SideGainControlR byte 255 Selects which right side tones are affected by
the CommPanel's received signal gains.

SideGainControlM byte 255 Selects which right side tones are affected by
the CommPanel's received signal gains.

SidetoneLocalL byte 0 Selects which left side tones are affected by the
CommPanel's received signal gains.

SidetoneLocalR byte 0 Selects which right side tones are affected by
the CommPanel's received signal gains.

SidetoneLocalM byte 0 Selects which monitor side tones are affected
by the CommPanel's received signal gains.

Table 100: StereoCommPanel internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 89

Studio Components Reference Guide (Rev. T, Ver. 0)

5.0 Control
Control components provide the logic for driving the functions of the objects in the model.
This section documents the following Control components:

l BitToByte

l ByteToBit

l ByteMerger

l ByteSplitter

l Counter

l Delay

l Ident

l Incrementer

l IntCompare

l IntFlexTable

l IntTable

l Latch

l LogicTable

l MathFunction

l NumToString

l PassThrough

5.1 BitToByte
Summary: BitToByte combines up to eight Boolean controls into a single byte-wide value.

Description: The first input (Input0) becomes the least significant bit, while the eighth input
(Input7) becomes the most significant bit. Each Boolean control may be inverted at the com-
ponent input. Gain can function as a multiplier for the output byte if BitToByte operates as
another conversion type function.

90 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 101, "BitToByte control inputs" below lists and describes BitToByte control input vari-
ables:

Name Type Default
Value

Description

Gain float32 1.0 Overall gain applied to the output result. IfGain is
blank, the scaler functions asGain.
l Modifier: multiply (*)
l Modifier_default: 1.0

Input0–Input7 Boolean FALSE Controls Boolean values that assembles into an 8-bit
byte.
l Modifier: XOR
l Modifier_default: FALSE

Table 101: BitToByte control inputs

Table 102, "BitToByte control output" below lists and describes the BitToByte control output
variable:

Name Type Default
Value

Description

Output float32 0.0 Normally, an integer value equaling the sum of the
binary weighting of the bits input to the component.
This value may function as a floating point number if
Gain is a floating point value.

Table 102: BitToByte control output

5.2 ByteToBit
Summary: ByteToBit splits an input byte into its eight, individual bit values.

Description: ByteToBit converts a single input byte into its eight, individual bit values.

Table 103, "ByteToBit control output" below lists and describes the ByteToBit control output
variable:

Name Type Default
Value

Description

BitOut0–
BitOut7

Boolean FALSE The eight individual bit outputs resulting from the
input byte word. BitOut0 is the least significant, and
BitOut7 is the most significant.

Table 103: ByteToBit control output

Copyright © 2025 Advanced Simulation Technology inc. 91

Studio Components Reference Guide (Rev. T, Ver. 0)

5.3 ByteMerger
Summary: ByteMerger accepts four uint8 inputs, interprets them as a multibyte value (i.e.,
int16, uint16, int32, uint32, or float32), and outputs the result as a float64.

Description: ByteMerger reconstructs an integer or float from a series of bytes. The input
type specifies how the input byte should integrate. For example, if reconstructing a two-byte
signed integer, link the least significant byte to In0 and the most significant byte to In1.

Figure 17, "ByteMerger pinout" below shows the ByteMerger pinout:

int16 value LSB

int16 value MSB

00000000

00000011

Byte Merger

In0

In1

In2

In3

Input Type = Int16

Endianness = Little
Result = 3.0

uint32 value MSB

uint32 value LSB

00000000

00000000

Byte Merger

In0

Input Type = uint32

Endianness = Big
Result = 257.0

00000001

00000001

In1

In2

In3

Figure 17: ByteMerger pinout

Table 104, "ByteMerger control inputs" below lists and describes ByteMerger control input
variables:

Name Type Default
Value

Description

In0 uint8 0 The first byte of the multibyte value.

In1 uint8 0 The second byte of the multibyte value.

In2 uint8 0 The third byte of the multibyte value.

In3 uint8 0 The fourth byte of the multibyte value.

Table 104: ByteMerger control inputs

92 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 105, "ByteMerger control outputs" below lists and describes ByteMerger control out-
put variables:

Name Type Default
Value

Description

Endianness endianness LITTLE The input byte order. If little endian, then the least sig-
nificant byte links to In0. If big endian, then the most
significant byte links to In0.

InputType types UINT_32 Specifies how the input bytes should be interpreted.

Result float64 0.0 The result of merging the input bytes based on endi-
anness and input type.

Table 105: ByteMerger control outputs

5.4 ByteSplitter
Summary: ByteSplitter decomposes an input value into byte-sized chunks, allowing for data
type conversion at either end.

Description: When ByteSplitter accepts an integer or float type, you can choose the specific
input type. If you choose an integer type, ByteSplitter only uses the value from InInt. If a
float type is selected, ByteSplitter only uses the value from InFloat. The unused value in
either case is set to 0. InInt and InFloat are constrained to uint64 and float64 respectively.
Depending on input type (e.g., int64 linked to the uint64), the result might be mis-
represented. Internally, the component is aware of the actual representation of the input data,
as specified by InputType.

Copyright © 2025 Advanced Simulation Technology inc. 93

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 18, "ByteSplitter pinout" below shows the ByteSplitter pinout:

Output: 257

(uint32)

01000000

01110000

00010000

00000000

00000000

00000000

00000000

00000000

Byte Splitter

Out0

Input Type = FLOAT_64

Endianness = Big

Output Type = UINT_32

Input: 257

(float64)

00000000

Byte Splitter

0

0 00000000

000000011

1 00000001

01000010

00101000

00000000

00000000

Input: 42

(float32)

Out1

Out2

Out3

Output: 42

(float64)

Out0

Input Type = FLOAT_32

Endianness = Big

0100000064

69 01000101

000000000

0 00000000

Out1

Out2

Out3

Out4 000000000

0 00000000

000000000

0 00000000

Out5

Out6

Out7

Output Type = FLOAT_64

Figure 18: ByteSplitter pinout

Table 106, "ByteSplitter control inputs" below lists and describes ByteSplitter control input
variables:

Name Type Default Value Description

InInt any integer type 0 Input port for integer-typed inputs.

InFloat any float type 0 Input port for float-typed inputs

Table 106: ByteSplitter control inputs

Table 107, "ByteSplitter control output" below lists and describes the ByteSplitter control
output variable:

Name Type Default Value Description

Out0–Out7 uint8 0 The output of the data in byte-sized chunks.
The size of the data type determines how
many output ports are used.

Table 107: ByteSplitter control output

94 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 108, "ByteSplitter internal parameters" below lists and describes ByteSplitter internal
parameter variables:

Name Type Default Value Description

Endianness endianness LITTLE Sets the endianness of the output data. Tog-
gling this variable reorders the data in theOut
array.

InputType types2 INT_16 Selects which input port (i.e., InInt or InFloat)
to use and lets the component know how to
interpret the bit-level representation of the
data coming in on the input port. This variable
allows you to input any integer or float type into
the input ports.

OutputType types2 INT_16 Allows you to convert the input value to a dif-
ferent data type before outputting the data in
byte-sized chunks.

Table 108: ByteSplitter internal parameters

5.5 Counter
Summary: Counter provides a time-based, general-purpose event or continuous ramping
function. In single-shot mode, Counter can provide an externally triggered function lookup
suitable for amplitude or frequency control of dynamically generated audio sources for sound
effects, such as explosions or touchdown thumps that play once for a fixed time.

When set to Continuous mode, Counter can provide a table-driven modulation of wave-
forms, where the modulation rate is slower than the overall model execution rate (i.e., 0 to
100 Hertz). Counter also provides a generic timer function for control logic within the
model.

Description: The operation of Counter is as follows:

1. When triggered, Counter counts from RangeStart to RangeEnd over the period of time
specified by Duration.

2. The current count value is passed as input X into an f(x) function.

3. The output of Counter is the function result.

Copyright © 2025 Advanced Simulation Technology inc. 95

Studio Components Reference Guide (Rev. T, Ver. 0)

As described above, RangeStart and RangeEnd define the counting sequence. If these para-
meters are set to the same value, Counter outputs 0.0. If RangeEnd is less than RangeStart,
Counter counts down. If the RangeEnd is greater than the RangeStart, Counter counts up.
When Counter is not counting, its value is 0.0.

Note: Counter's output may not necessarily be 0.0 when Counter is 0.0. Counter's output
depends on the specified function.

If Duration is less than zero, Counter uses a value of zero for Counter duration.

When Continuous is TRUE, Counter continuously cycles through the count sequence. When
it reaches RangeEnd, it waits for the period of time specified by Delay. It then begins the
count sequence again. If Continuous is FALSE, Counter resets to 0.0 when it reaches the
end of the sequence.

When CountAll is TRUE, Counter proceeds to the end of the count sequence, even if Trig-
ger is removed. At the end of the sequence, Counter resets to 0.0. If this variable is FALSE,
Counter resets to 0.0 as soon as Trigger expires.

Table 109, "Counter control inputs" below lists and describes Counter control input vari-
ables:

Name Type Default
Value

Description

Delay float32 1.0 The length of time in seconds between counting
cycles when Continuous is TRUE.
l Modifier: multiply (*)
l Modifier_default: 0.0

Duration float32 1.0 The length of time in seconds for Counter to go from
RangeStart to RangeEnd.
l Modifier: multiply (*)

Pause Boolean FALSE Counter pauses at its current value when Pause is
TRUE.
l Modifier: XOR

Trigger Boolean FALSE TRUE initiates counting. Continuous determines how
Counter behaves when Trigger is FALSE.
l Modifier: XOR

Table 109: Counter control inputs

96 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 110, "Counter control output" below lists and describes the Counter control output
variable:

Name Type Default
Value

Description

Result float32 0.0 Displays the final Counter result.

Table 110: Counter control output

Copyright © 2025 Advanced Simulation Technology inc. 97

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 111, "Counter internal parameters" below lists and describes Counter internal para-
meter variables:

Name Type Default
Value

Description

Continuous Boolean FALSE Continuous determines Counter behavior when the
Trigger is TRUE. If TRUE, Counter continually steps
through the counting sequence. When it reaches
RangeEnd, it returns to RangeStart and begins the
counting sequence again. If FALSE, Counter only
does one pass through the counting sequence. It
stops counting when it reaches RangeEnd.

CountAll Boolean FALSE Determines Counter behavior when Trigger trans-
itions from TRUE to FALSE. If TRUE, Counter con-
tinues counting until it reaches the RangeEnd value
when Trigger goes FALSE. If FALSE, Counter imme-
diately stops counting when Trigger goes FALSE.

Function function <Select> This service handle determines the final output
based on the current Counter value. Functionmay
be of any of the types supported by Function service.
The most commonly used Counter functions are
Table and Comparator.
l Modifier: multiply (*)
l Modifier_default: 1.0

FunctionGain float32 1.0 The overall gain applied to the Function output result.

RangeEnd float32 1.0 Specifies the ending value of the Counter sequence.
When triggered, Counter counts from RangeStart to
RangeEnd.

RangeStart float32 0.0 Specifies the starting value of the Counter
sequence. When triggered, Counter counts from
RangeStart to RangeEnd.

UpDown Boolean FALSE Controls if Counter should count from RangeStart to
RangeEnd then back to RangeStart within the Dur-
ation period. This feature is useful for inserting win-
dup and wind down effects to dynamically generated
aural cue sounds.

Table 111: Counter internal parameters

98 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

5.6 Delay
Summary: Postpones the input control value.

Description: Delay postpone a value by the specified number of k-frames. Each k-frame is
9.333 milliseconds (msec). The maximum settable delay is 750 k-frames, or approximately 7
seconds. Delay postpones control data (i.e., host data) within the model and may be useful for
creating certain state logic.

Table 112, "Delay control inputs" below lists and describes Delay control input variables:

Name Type Default
Value

Description

DelayKFrames int32 0 The number of k-frames to delay the value. Each k-
frame is 9.333 msec. Maximum setting is 750 k-
frames or 7 seconds.

Enable Boolean FALSE When TRUE, the input value is delayed. When
FALSE, the input value is not delayed.

ValueIn float32 0.0 An input value from another component in the
model. This value is delayed and sent to ValueOut.

Table 112: Delay control inputs

Table 113, "Delay control output" below lists and describes the Delay control output variable:

Name Type Default
Value

Description

ValueOut float32 0.0 The delayed value, which is based on ValueIn and
DelayKFrames.

Table 113: Delay control output

Table 114, "Delay internal parameter" below lists and describes the Delay internal parameter
variable:

Name Type Default
Value

Description

DelayMsec float32 0 The k-frame delay expressed in milliseconds.

Table 114: Delay internal parameter

Copyright © 2025 Advanced Simulation Technology inc. 99

Studio Components Reference Guide (Rev. T, Ver. 0)

5.7 Ident
Summary: Ident, much likeMorseKeyer, provides an interface between the HostIn packet
and the model for any four-character ASCII string identifier sequence.

Description: Ident decodes the incoming zero-terminated ASCII string into the correct
sequence of on and off pulses required for ident code communication. In addition to the usual
letters and numbers defined in Morse code, it also includes the characters (* and -) to rep-
resent individual dot and dash combinations. Offset to input variable from beginning of Eth-
ernet packet in bytes.

Table 115, "Ident control inputs" below lists and describes Ident control input variables:

Name Type Default
Value

Description

CarrierMode Boolean FALSE Provides control of carrier wave state gaps in the
identifier. When TRUE, the identifier has spaces
appended to the front and back of the Morse string.
The carrier wave is on when not keying Morse string.

Ident ident N/A Connection to feed Ident into the component.

Inverted Boolean FALSE Provides local logic inversion of keying.

RepeatRate float32 1 Repeat period in seconds for retransmission of
Morse code string.
l Modifier: 5

WordRate uint8 1 Determines the rate at which the word is played.
Units are in dots per second. The faster the rate, the
higher the number.
l Modifier: 8

Table 115: Ident control inputs

Table 116, "Ident control output" below lists and describes the Ident control output variable:

Name Type Default
Value

Description

Result Boolean FALSE Output of the Morse code toggle tone.

Table 116: Ident control output

100 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

5.8 Incrementer
Summary: Tracks the number of times an event has occurred.

Description: Incrementer adds one to an output count when the trigger transitions, which
can track basic state information. The output reverts to zero on model load or when Reset trig-
gers. ResetAtValue and TimeToReset can automatically reset the output.

Table 117, "Incrementer control inputs and output" below lists and describes Incrementer
control input and output variables:

Name Type Default Value Description

Control Inputs

Reset Boolean FALSE Resets the output count to zero when TRUE.

Trigger int32 0 Increments the result by 1 when transitioning to a
higher or lower number.

Control Output

Result float32 0.0 The output count increments by 1 when Trigger
transitions.

Table 117: Incrementer control inputs and output

Table 118, "Incrementer internal parameters" below lists and describes Incrementer internal
parameters:

Name Type Default
Value

Description

ResetAtValue uint32 0 A ceiling for the result. When Result reaches
ResetAtValue, it immediately sets to zero. If
ResetAtValue remains at 0, then Result counts up
indefinitely.

TimeToReset float32 0.0 A timer in seconds that begins every time Result
increments. If the time expires before the next
increment, the Result resets to 0. If TimeToReset
is 0, then no timed reset occurs.

TriggerType trigger_
type

RISING_
EDGE

Determines when the count should increment. If
set to RISING_EDGE, Result increments when the
trigger increases (0 to 1). If set to FALLING_
EDGE, Result increments when Trigger decreases
(1 to 0). IfON_TRANSITION, Result increments in
either case.

IncrementerValue uint32 0 Incrementer value presented to function.

Table 118: Incrementer internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 101

Studio Components Reference Guide (Rev. T, Ver. 0)

5.9 IntCompare
Summary: IntCompare checks eight input values and compares them against a range of
integers. Each integer is compared against a different range. The result of all eight com-
parisons outputs as a single byte bit mask and a Boolean value.

Description: IntCompare compares multiple values at the same time. For example, compare
a single frequency against multiple frequency bands to determine if you should change a
radio’s mode. The component replaces many IntTables or In-Range MathFunctions. Each
input integer (i.e., InputA–InputH) is compared against its own range (i.e., RangeA–RangeH).
Result is TRUE when all controlled inputs are within range. Output also provides a bit mask
so you can use the result of all eight comparisons in the model. The ranges are all-inclusive.

Table 119, "IntCompare control inputs" below lists and describes IntCompare control input
variables:

Name Type Default
Value

Description

InputA–InputH uint32 0 Compared against its matching range. For
example, InputA is compared against RangeA,
and InputB is compared against RangeB. The
range for each integer is inclusive. If the input
value is within range, it sets the corresponding bit
inOutput to 1. For example, if InputA is in range,
the least significant bit ofOutput is 1; if InputA is
out of range, it is 0. InputB's comparison is the
second bit, and InputH is the most significant bit.
l Modifier: add (+)
l Modifier_Default: 0

ControlByte uint8 255 A bit mask that determines which input integers
are used for Result andOutput. When equal to
255, all eight inputs must be in range for Result to
be TRUE. If equal to 1, IntCompare only uses
InputA and RangeA.
l Modifier: and (&)
l Modifier_Default: 255

Table 119: IntCompare control inputs

102 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 120, "IntCompare control outputs" below lists and describes IntCompare control out-
put variables:

Name Type Default
Value

Description

Output byte 255 A bit mask that contains the result of all eight
comparisons. EachOutput bit corresponds to
one of the eight inputs. If the bit is 1, then the
input is within range. If the bit is 0, then the input
is out of range. For example, if InputA is within
RangeA but the other seven inputs are out of
range,Output equals 1.

Result Boolean TRUE The master result of all comparisons. All con-
trolled integers must be in range for Result to be
TRUE. If ControlByteis less than 255, only the
selected integers must be in range for Result to
be TRUE.

Table 120: IntCompare control outputs

Table 121, "IntCompare internal parameters" below lists and describes IntCompare internal
parameter variables:

Name Type Default Value Description

RangeA–RangeH

RangeLower uint32 0 The lower end of each range comparison. If the
input equals or is greater than RangeLower but
less than RangeUpper, the comparison is in
range. Each input only looks at its corresponding
RangeLower. InputA looks at RangeA, InputB
looks at RangeB, and so on.

RangeUpper uint32 0 The upper end of each range comparison. If the
input equals or is less than RangeUpper but
greater than RangeLower, the comparison is in
range. Each input only looks at the cor-
responding RangeUpper. InputA looks at
RangeA, InputB looks at RangeB, etc.

Table 121: IntCompare internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 103

Studio Components Reference Guide (Rev. T, Ver. 0)

5.10 IntFlexTable
Summary: IntFlexTable provides a simple lookup function for integer values. It is similar to
IntTable with the added feature of having the lookup values as control inputs rather than
internal parameters.

Description: IntFlexTable receives an integer input from an external connection. If this
input is between 1 and 16, the result is the corresponding lookup value. For example, if Index
is 7, Lookup7 is used. If Index is outside the range, the result value is set in IndexNot1–16.
You can set each lookup value from an external connection. Output then takes the resulting
lookup value, adds the ResultOffset to it, and multiplies it by Gain.

Table 122, "IntFlexTable control inputs, output, and internal parameter" below lists and
describes IntFlexTable control input, output, and internal parameter variables:

Name Type Default Value Description

Control Input

Gain float32 1.0 Overall gain applied to the output result.

Index int32 0 Index value used for table lookup. For example,
when Index = 7, Lookup7 is used.

Lookup1–
Lookup16

int32 0 Corresponding entries for when Index is between 1
and 16 inclusive. If Index equals 7, IntFlexTable
uses Lookup7.
l Modifier: add (+)
l Modifier_default: 0

Control Output

Output float32 0 Final output value of IntFlexTable.

Output = Lookup + ResultOffset ×Gain.

Internal Parameter

IndexNot1–
IndexNot16

int32 0 This value is used when Index is less than 1 or
greater than 16.

Table 122: IntFlexTable control inputs, output, and internal parameter

104 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

5.11 IntTable
Summary: Integer Table (IntTable) provides a simple lookup function for integer values.
You can use IntTable to play a sound file index or receive/transmit selections in a com-
munication panel.

Description: IntTable receives an integer input from an external connection and drives an
index to add an offset. If the derived index is between 1 and 16, the result is the cor-
responding entry in the lookup table. If the derived index is outside of this range, the result is
the OutofRange value. Lookup_Table values are hard-coded as internal parameters.

IntTable then adds an offset to the result and multiplies that value by a gain multiplier. An
external connection may drive ResultOffset. This input provides a means to effectively change
all of the lookup table values by a fixed amount dynamically. This functionality is useful if
the lookup value set varies under certain logic conditions. Finally, IntTable applies a gain
multiplier to derive the output value.

Table 123, "IntTable control inputs" below lists and describes IntTable control input vari-
ables:

Name Type Default
Value

Description

Gain float32 1.0 The overall gain applied to theOutput result. If the
gain connection is blank, then the scaler is theGain
value.
l Modifier: multiply (*)
l Modifier_default: 1.0

Index int32 0 Index used for table lookup. If no external variable is
connected to Index, ResultOffset is used.
l Modifier: add (+)
l Modifier_default: 0

ResultOffset int32 0 An offset value added to the value in the table. If no
external variable is connected to ResultOffset, IntT-
able uses the modifier value.
l Modifier: add (+)
l Modifier_default: 0

Table 123: IntTable control inputs

Copyright © 2025 Advanced Simulation Technology inc. 105

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 124, "IntTable control output" below lists and describes the IntTable control output
variables:

Name Type Default
Value

Description

Output float32 0.0 Final output value from IntTable.

Table 124: IntTable control output

Table 125, "IntTable internal parameters" below lists and describes IntTable internal para-
meter variables:

Name Type Default
Value

Description

IndexNot1–
IndexNot16

int32 0 Lookup table value for result index less than 1 and
greater than 16.

Lookup_Table int32[16] 1–16 The lookup table value for result Index1–Index16.

Table 125: IntTable internal parameters

5.12 Latch
Summary: Latch holds an input value for a specified time or indefinitely.

Description: Latch holds a control value inside the model for other components to use. As a
result, you can store an input that varies over time and send it elsewhere in the model.

Latch is ideal for sampling a rapidly changing control value such as the Random Number
MathFunction, or for building state logic into the model in conjunction with Incrementer.
Latch reads the Input value and sets it as the Output value.

The component then hold that value for the duration of LatchTime. After LatchTime expires,
a new Input value is taken and used as the Output again. Alternatively, setting LatchTime to
0.0 holds the Input value indefinitely once Enable is TRUE.

106 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 126, "Latch control inputs, output, and internal parameter" below lists and describes
Latch control input, control output, and internal parameters variables:

Name Type Default Value Description

Control Inputs

Enable Boolean FALSE Causes Latch to hold and store the current input
value. When FALSE, the output is equal to the input.
When TRUE, it holds the Input value as theOutput
value, even if Input changes state. If LatchTime is
0.0, theOutput does not change until Enable is
FALSE.
l Modifier: XOR
l Modifier_default: FALSE

Input float32 1.0 The control value that is latched and held. Enable
must be TRUE to store the Input.
l Modifier: multiply (*)
l Modifier_default: 1.0

Control Output

Output float32 1.0 The result of Latch. If Enable is FALSE, this value is
equal to the Input. Otherwise,Output is equal to the
value of Input at the time that Enable is TRUE. If
LatchTime is not zero and Enable is TRUE,Output
latches again after the duration of LatchTime. This
continues to happen as long as Enable is TRUE.

Internal Parameter

LatchTime float32 0.0 The time, in seconds, for Latch to hold the Input
value before latching a new value. If Enable goes
FALSE before LatchTime is complete, theOutput
reverts to Input. A LatchTime of 0 causes Latch to
store the Input value as long as Enable is TRUE.

Table 126: Latch control inputs, output, and internal parameter

5.13 LogicTable
Summary: LogicTable a mechanism for combining up to four Boolean controls into a single
function. The four inputs combine to form a four-bit number that acts as an index into a 16-
value array or lookup table. This array contains floating point values, combining control func-
tions in a simple fashion.

Copyright © 2025 Advanced Simulation Technology inc. 107

Studio Components Reference Guide (Rev. T, Ver. 0)

Description: The four Boolean inputs into the component are combined into a single Index
value as follows:

Index = (Input0 × 1) + (Input1 × 2) + (Input2 × 4) + (Input3 × 8)

The resulting index value is used as an Index into the 16-value array. The array values are set
as parameters. LogicTable determines the array value at the given index. It then adds the
array value to the chain value to derive the final output.

Table 127, "LogicTable control inputs" below lists and describes LogicTable control input
variables:

Name Type Default
Value

Description

Chain float32 1.0 Value added to gain scaledOutput from the lookup
table.
l Modifier: multiply (*)
l Modifier_default: 0.0

Gain float32 1.0 Scales theOutput from the lookup table.
l Modifier: multiply (*)
l Modifier_default: 1.0

Input0 Boolean FALSE A Boolean input whose value is assigned to Bit0 in
the derived index value. If TRUE, a value of 1 is
added to the derived index value.
l Modifier: XOR
l Modifier_default: FALSE

Input1 Boolean FALSE A Boolean input whose value is assigned to Bit1 in
the derived index value. If TRUE, a value of 2 is
added to the derived index value.
l Modifier: XOR
l Modifier_default: FALSE

Input2 Boolean FALSE A Boolean input whose value is assigned to Bit2 in
the derived index value. If TRUE, a value of 4 is
added to the derived index value.
l Modifier: XOR
l Modifier_default: FALSE

Input3 Boolean FALSE Boolean input whose value is assigned to Bit3 in the
derived index value. If TRUE, a value of 8 is added to
derived index value.
l Modifier: XOR
l Modifier_default: FALSE

Table 127: LogicTable control inputs

108 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 128, "LogicTable control output" below lists and describes the LogicTable control out-
put variable:

Name Type Default
Value

Description

Output float32 0 Final output value from LogicTable.

Table 128: LogicTable control output

Table 129, "LogicTable internal parameter" below lists and describes the LogicTable internal
parameter variable:

Name Type Default
Value

Description

Lookup_Table float32[16] 0–15.0 Lookup table value for result index 0–15.

Table 129: LogicTable internal parameter

5.14 MathFunction
Summary:MathFunction calls a user-specified function (e.g., lookup table, add, subtract,
multiply, divide, etc.) that acts on the input(s). The output is the result of the specified func-
tion acting on the input variables.MathFunction links to a variable inside the data sink com-
ponent.

Description:

MathFunction provides a variety of modifier features:

1. One, two, or three data source inputs.

2. A link to the Function Service, providing access to a one-variable function (i.e., f(x)),
a two-variable function (i.e., f(x,y)) or a three-variable function (i.e., f(x, y, z)).

MathFunction has X, Y, and Z inputs and serves the following functions:

l One-variable function: links one input to a value, and a one-variable function (i.e., f(x))
is selected. The two unused inputs assume values of 1 or are unused.

l Two-variable function: two inputs link to values, and a two-variable function (i.e., f
(x,y)) is selected. The unused input assumes a value of 1 or is unused.

l Three-variable function: all three inputs link to values, and a three-variable function
(i.e., f(x, y, z)) is selected. Any unused input is ignored. Nondriven inputs assume a
value of 1. Each input has its own constant scaling factor and multiplier operand. Each
of the input scaling factors are user-selectable.

Copyright © 2025 Advanced Simulation Technology inc. 109

Studio Components Reference Guide (Rev. T, Ver. 0)

Choose the function operating on the X, Y, and Z inputs is selected using the function handle.
The function handle specifies an f(x), f(x, y) or f(x, y, z) function from the Function Service.
Function handles include the following:

l Table (x)

l Scale/Limit (x)

l Log/Antilog (x)

l Lag Filter (x)

l Add/ Subtract/ Multiply/ Divide (x, y)

l Random Number (x)

l Comparator / MaxMin (x)

l Switch (x, y, z)

You can modify the function evaluation with a scaling factor and multiplier operand. Gain is
also available as a final-stage scaling factor—it modifies the scaled evaluation of the func-
tion. Gain has its own constant scaling factor and multiplier operand. The final result of
MathFunction equals the scaled Gain value multiplied by the scaled function evaluation.

Result data types include:

l Float: output result ofMathFunction and a floating point value.

l Integer: output result ofMathFunction, an integer value, and a rounding of the float-
ing point result.

l Boolean: output result ofMathFunction as a Boolean. The Boolean is a digital com-
parison of the float value based on a 0.3 and 0.7 low and high threshold value. Below
0.3 is turned off, above 0.7 is turned on, the 0.4 difference provides a hysteresis region.

Table 130, "MathFunction control inputs" on the facing page lists and describesMathFunc-
tion control input variables:

Name Type Default
Value

Description

Gain float32 1.0 Links to another control source to provide overall
gain control of theMathFunction evaluation. If no
external variable is connected toGain,MathFunc-
tion uses the scaler value.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: min.–max. values of each type

110 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Input_X float32 1.0 Links to another control source (e.g., HostIn or
MathFunction), which provides the first variable for
MathFunction to use (i.e., the first stack element). If
no external variable is connected to Input_X, the
value of the scaler is used.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: minimum to maximum values of each type

Input_Y float32 1.0 Links to another control source (e.g., HostIn or
MathFunction), which provides the second variable
forMathFunction to use (i.e., the second stack ele-
ment). If no external variable is connected to Input_Y,
the value of the scaler is used.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: minimum to maximum values of each type

Input_Z float32 1.0 Links to another control source (HostIn or
MathFunction), which provides the third variable for
MathFunction to use (i.e., the third stack element). If
no external variable is connected to Input_Z, the
value of the scaler is used.
l Modifier: multiply (*)
l Modifier_default: 1.0
l Range: minimum to maximum values of each type

Table 130: MathFunction control inputs

Table 131, "MathFunction control output" below lists and describes theMathFunction con-
trol output variable:

Name Type Default
Value

Description

Result float32 1.0 The result of the input values, acted on by the spe-
cified function and internal multiplier scaling factors.

Table 131: MathFunction control output

Copyright © 2025 Advanced Simulation Technology inc. 111

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 132, "MathFunction internal parameter" below lists and describes theMathFunction
internal parameter:

Name Type Default
Value

Description

Function function <Select> The function service handle selections include: Table
(x), Scale (x,y), Random Number (x), Comparator
/MaxMin (x), and Switch (x, y, z).

Range:
l Table
l Scale
l Limit
l Log
l Antilog
l Lag filter
l Add

l Subtract
l Multiply
l Divide
l Random
l Comparator
l Maxmin
l Switch

Table 132: MathFunction internal parameter

5.15 NumToString
Summary: NumToString takes a set of input numbers and converts them into a single string
for use with Radio Transceiver. This functionality allows host control of common Dis-
tributed Interactive Simulation (DIS) parameters for radios by setting the DomainNameIn and
ProtocolIDIn fields of the Radio Transceiver.

Description: NumToString takes up to four input numbers and combines them together to
form a string. A prefix, suffix, and character separator help fit the ProtocolID and
DomainName syntax for radios. The most common use of NumToString is to set the exer-
cise ID of the radio by creating a string (e.g., DIS:5).

The string above can be used in the Transceiver's DomainNameIn and sets the radio's DIS
exercise ID to 5. As a result, Input0 is 5, Prefix is "DIS:" and InputCount is 1. Another com-
ponent can also set Input0, allowing you to change the radio's exercise ID to as needed.

NumToString also produces strings such as DIS:80.1.3.17.

This string can be used in a Transceiver's ProtocolIDIn and sets Site ID to 80, Application
ID to 1, Entity ID to 3, and the Radio ID to 17. With this method, another component or
HostIn can dynamically set Input0–Input3, allowing you to change any of the DIS IDs for a
radio on an as needed basis. To create the string above, set the prefix to "DIS:" and
InputCount to 4. Additionally, set Input0–Input3 to the digits used above, and use a period for
the separator.

112 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 133, "NumToString control inputs" below lists and describes NumToString control
input variables:

Name Type Default
Value

Description

Input0 int32 0 Becomes part of the output string based on con-
ditional parameters. If used for Domain Name:
Domain Name equals the DIS Exercise ID. If used for
Protocol ID: Protocol ID equals the DIS Entity ID or
DIS Site ID.

Input1 int32 0 Becomes part of the output string based on con-
ditional parameters. If used for Protocol ID, it equals
the DIS Radio ID or DIS Application ID.

Input2 int32 0 Becomes part of output string based on conditional
parameters. If used for Protocol ID, it equals DIS
Entity ID.

Input3 int32 0 Becomes part of the output string based on con-
ditional parameters. If used for Protocol ID, it equals
DIS Radio ID.

Table 133: NumToString control inputs

Table 134, "NumToString control output" below lists and describes the NumToString con-
trol output:

Name Type Default
Value

Description

Output string 0000 Outputs string values, maximum number of string
characters = 32.

Table 134: NumToString control output

Table 135, "NumToString internal parameters" on the next page lists and describes
NumToString internal parameter variables:

Name Type Default
Value

Description

InputCount int32 0 Sets the number of values defined by inputs, typically
4.

KCycles int32 0 Currently not required.

Prefix string N/A Attaches to front of string. Typically used for “DIS” or
colon “ : ”.

Copyright © 2025 Advanced Simulation Technology inc. 113

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Separator string N/A Attaches to string to separate values. Typically used
for “ . ” or space “ ”.

Suffix string N/A Attaches to end of string and may be any string
value.

Table 135: NumToString internal parameters

5.16 PassThrough
Description: PassThrough passes variables from HostIn to HostOut. Do not use this com-
ponent for any other purpose. For example, you may want to transfer unmodified host input
variables through the model and out to a separate host computer or touchscreen tablet.

114 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

6.0 Dynamics
The following section details Dynamics components and the objects within them, which are
used to control the volume or level of signals. The Dynamics group includes the following
components:

l AGC keeps a signal near a “target” level.

l CompressorLimiter prevents signals from getting too loud.

l Expander reduces the volume of quiet signals like background noise between speech.

l Gate only allows a signal through if it is loud enough.

Common to all four of these components are controls measured in dB and dB/sec. The dB
controls such as target and threshold specify signal levels relative to 1.0 (as seen in the signal
scope). Table 136, "Linear equivalents to dB values" below shows a few dB values and their
linear scale equivalents.

dB Value Linear Value

0 1.0

-6 0.5

-12 0.25

-18 0.125

--- ---

-40 0.01

-60 0.001

Table 136: Linear equivalents to dB values

Speech, for example, might be around -20 dB in the system (depending on the microphone
and input gains), while background noise might be around -60 dB. Attack and Release gain
controls are measured in dB/sec, which is one way of specifying how quickly the gain can
change. An attack of 6 dB/sec, for example, means the gain could double every second. Gen-
erally, practical Attack and Release rates are much quicker, typically in the range of 50–1000
dB/sec.

Copyright © 2025 Advanced Simulation Technology inc. 115

Studio Components Reference Guide (Rev. T, Ver. 0)

6.1 AGC
Summary: AGC for automatic gain control attempts to keep audio at a consistent, specified
volume.

Description: AGC controls the signal's volume to keep the output close to a target volume.
This component contains two stages: AGC and LIMITER. In the AGC stage, the component
reduces signals above the target and increases signals below the target (and above the
threshold). LIMITER then prevents any high peaks that AGC may have induced.

AGC can be useful for a variety of volume-leveling tasks, such as evening out microphone
volumes before the input of the speech recognition system.

Table 137, "AGC audio input and output" below lists and describes AGC audio input and out-
put variables:

Name Type Default Value Description

Audio Input

InSignal audio N/A The signal that you will filter. This input links into AGC
from somewhere else in the model.

Audio Output

OutSignal audio N/A The processed signal that has gone through AGC
and LIMITER stages.

Table 137: AGC audio input and output

Table 138, "AGC control inputs" on the facing page lists and describes AGC control input
variables:

Name Type Default
Value

Description

Attack float32 1.0 Determines how quickly the gain increases when the
level drops below the threshold. Values are in
decibels per second. Higher attack increase rate of
gain change.
l Modifier: 250.0

Enable Boolean TRUE Controls whether any gain adjustment occurs.

LimEnable Boolean TRUE Turns the LIMITER stage on or off in the AGC. If
TRUE, the peak output levels of the AGC does not
go above LimThreshold.

116 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

LimThreshold float32 1.0 Maximum peak level in dB allowed in output signal. A
value of -18 corresponds to 0.125 linear.
l Modifier: -18.0

OutGain float32 1.0 Applied to the signal after AGC stage.

Ratio float32 1.0 Controls how much the signal level advances to the
Target. A 4.0 ratio (4:1) means a 4 dB signal from the
target leaves AGC only 1 dB away. Higher ratios
have more push.
l Modifier: 4.0

Release float32 1.0 Determines how quickly gain decreases when signal
level goes above Target. Values are in decibels per
second. Higher releases aggressively reduce the
Root Mean Squared gain.
l Modifier: 100

Target float32 1.0 The “goal” output signal level in the Telestra web
interface, measured in dB, relative to 1.0 level. As
with any dB control, negative values are quieter; pos-
itive values are louder.
l Modifier: -24.0

Threshold float32 1.0 Level above which automatic gain control occurs.
Adjust above noise floor, so background noise does
not increase. Values are in dB, relative to the
Telestra web interface 1.0 level.
l Modifier: -70.0

Table 138: AGC control inputs

6.2 CompressorLimiter
Summary: CompressorLimiter reduces the volume of loud sounds.

Description: CompressorLimiter has two stages that work together to keep volume (i.e., sig-
nal levels) under control. In the first stage, COMPRESSOR reduces the volume of the signal
when its average Root Mean Squared level exceeds Threshold. In the second stage, LIMITER
then prevents peak levels from exceeding the LimThreshold. This functionality makes it a use-
ful tool for preventing sound levels or clipping that could cause damage to equipment or your
hearing.

Copyright © 2025 Advanced Simulation Technology inc. 117

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 139, "CompressorLimiter audio inputs" below lists and describes CompressorLimiter
audio input variables:

Name Type Default
Value

Description

InSignal audio N/A The processed signal. This input links to Com-
pressorLimiter from elsewhere in the model.

SideChain audio N/A A second audio input which is used for level cal-
culations if SideChainEnable is TRUE. In this
mode, the InSignal is compressed only if the
SideChain exceeds the threshold. This is useful
for controlling the relative volumes of two
sounds.

Table 139: CompressorLimiter audio inputs

Table 140, "CompressorLimiter audio output" below lists and describes the Com-
pressorLimiter audio output variable:

Name Type Default Value Description

OutSignal audio N/A The processed signal that has gone through the
COMPRESSOR and LIMITER stages.

Table 140: CompressorLimiter audio output

Table 141, "CompressorLimiter control inputs" on the facing page lists and describes Com-
pressorLimiter control input variables:

Name Type Default
Value

Description

Attack float32 1.0 Determines how quickly the gain is turned down
when the signal level goes above threshold. Val-
ues are in dB/sec. Higher attacks produce faster
gain reductions.
l Modifier: 350.0

CompOutGain float32 1.0 The gain applied to the signal after the
COMPRESSOR stage but before the LIMITER
stage.

Enable Boolean TRUE Determines if the COMPRESSOR stage adjusts
the gain.

LimAllowClip Boolean FALSE If TRUE, signal peaks are hard clipped at
LimThreshold; produces radio distortion-like
effects.

118 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

LimEnable Boolean TRUE Turns the LIMITER stage on or off in Com-
pressorLimiter. If TRUE, its peak output levels
do not exceed the LimThreshold.

LimRelease float32 1.0 Rate in dB/sec that determines how quickly the
LIMITER responds to drop-in signal levels.
Higher releases cause a faster increase in gain
to ensure the quiet signals do not reduce in
volume.
l Modifier: 100.0

LimThreshold float32 1.0 Maximum peak level in dB allowed in output sig-
nal. A value of -12 corresponds to 0.25 linear, or
1/4 of “full scale” signal.
l Modifier: -12.0

OutGain float32 1.0 Gain applied to signal after both the
COMPRESSOR and LIMITER stages.

Ratio float32 1.0 Controls the aggressiveness of the
COMPRESSOR. A high ratio is more aggressive
and means more gain reduction occurs when the
signal goes above threshold. Specifically, a 4.0
ratio (4:1) means a 4 dB signal above the
threshold leaves CompressorLimiter only 1 dB
above the threshold. A 20 ratio or higher is equi-
valent to (∞:1), meaning the signal's average
level never exceeds the threshold.
l Modifier: 4.0

Release float32 1.0 Determines how quickly the gain turns when the
level goes below the threshold. Values are in
dB/sec. Higher releases produce more aggress-
ive gain rate increase.
l Modifier: 50.0

SideChainEnable Boolean FALSE If TRUE, SideChain audio input controls gain
reduction on InSignal, rather than InSignal itself.

Threshold float32 1.0 The average Telestra web interface signal level
above which gain reduction occurs. Values are in
dB.
l Modifier: -24.0

Table 141: CompressorLimiter control inputs

Copyright © 2025 Advanced Simulation Technology inc. 119

Studio Components Reference Guide (Rev. T, Ver. 0)

6.3 Expander
Summary: Expander is used reduces the volume of background noise between speech.

Description: Expander increases the dynamic range of a signal by making quiet sounds
quieter. If the average Root Mean Squared level of the signal is below the threshold,
Expandersmoothly reduces the gain on the signal. The key to using Expander is to adjust
the threshold to be just above the noise floor. This component is useful in hot mic situations
to reduce background noise transmission.

Table 142, "Expander audio inputs and outputs" below lists and describes Expander audio
input and output variables:

Name Type Default Value Description

Audio Input

InSignal audio N/A The processed signal; this input is linked into the com-
ponent from somewhere else in model.

Audio Output

OutSignal audio N/A The processed signal that went through the
Expander stage.

Table 142: Expander audio inputs and outputs

Table 143, "Expander control inputs" on the facing page lists and describes Expander control
input variables:

Name Type Default
Value

Description

Attack float32 250.0 Controls how quickly the gain changes in response to
a signal level increase. Expander controls how
quickly the gain is restored to 1.0 when speech
resumes.

Enable Boolean TRUE Controls whether any gain adjustment occurs.

OutGain float32 1.0 The gain applied after the Expander stage.

Ratio float32 2.0 Controls how aggressively sounds below the
threshold reduce in volume. A ratio of 2.0 (2:1)
means a signal of 1 dB below exits the Expander 2
dB below.

120 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Release float32 1.0 Controls how quickly the gain changes in response to
a decrease in signal level. High releases causes a
quick reduction in background noise when speech
stops.
l Modifier: 50.0

Threshold float32 1.0 Level in dB below that expansion (i.e., gain reduc-
tion) occurs. Adjust threshold to just above loudest
sound that reduces in volume; corresponds to just
above background noise level.
l Modifier: -55.0

Table 143: Expander control inputs

6.4 Gate
Summary: Gate only allows a signal through if it is loud enough to break the threshold.

Description: This component is similar to Audio/Vox because it only lets audio through (to a
radio, etc.) if the audio level is above a set level. For example, you might adjust the threshold
just below the quietest speech allowed through. Gate reacts to peak levels in the signal,
unlike Vox, which looks at average levels. As a result, Gate is more responsive, especially to
the first sounds as speech starts.

Table 144, "Gate audio input and output" below lists and describes Gate audio input and out-
put variables:

Name Type Default Value Description

Audio Input

InSignal audio N/A The filtered signal; links intoGate from somewhere
else in the model.

Audio Output

OutSignal audio N/A Processed signal that went throughGate.

Table 144: Gate audio input and output

Copyright © 2025 Advanced Simulation Technology inc. 121

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 145, "Gate control inputs" below lists and describes Gate control input variables:

Name Type Default
Value

Description

Depth float32 1.0 Amount of gain reduction in dB that is applied when
the signal dips below the threshold.
l Modifier: 40.0

Enable Boolean TRUE Controls whether any gain adjustment occurs.

Hold float32 1.0 Delay in milliseconds before reducing gain on a sig-
nal after it goes below the threshold; allows the signal
throughGate for hold time, even though it is below
the threshold.
l Modifier: 1000.0

OutGain float32 1.0 Applied afterGate stage.

PTT Boolean FALSE OpensGate (i.e., let the signal through), even if it is
below the threshold.

Threshold float32 1.0 Level in dB below which a signal attenuates in
volume or is barred from theGate.
l Modifier: -45.0

VoxMode Boolean FALSE If TRUE,Gate acts like the Vox component and
causes an audio stream to go inactive if it is below
the threshold. If FALSE, signals below the threshold
attenuates according to the depth setting but remain
active.

Table 145: Gate control inputs

122 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

7.0 Environmental Cue
The following section details the Environmental Cue components and the objects within
them. The Environmental Cue components include:

l 5BandFilter

l Engine

l EngineLevelD

l FilterBank

l JetEngine

l MultiFilter

l PropRotor

l SpeakerEQ

l VibrationCapture

7.1 5BandFilter
Summary: Combines fiveMultiFilter components into one component.

Description: This component essentially connects fiveMultiFilter components in series.
This component therefore consumes more processing power and should be used for complex
filtering schemes. The advantage of using this component over fiveMultiFilter components
is that all inter-filter routing is handled within the component. For more information about
MultiFilter components, go to Section 7.4, "MultiFilter" on page 131.

Table 146, "5BandFilter audio input and output" below lists and describesMultiFilter audio
input and output variables:

Name Type Default Value Description

Audio Input

InSignal audio N/A The audio signal to be filtered from somewhere else
in the model.

Audio Output

OutSignal audio N/A The signal after it is filtered.

Table 146: 5BandFilter audio input and output

Copyright © 2025 Advanced Simulation Technology inc. 123

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 147, "5BandFilter control inputs" on the facing page lists and describes 5BandFilter
control input variables:

Name Type Default
Value

Description

Filter1_
Enable1–Fil-
ter5_Enable5

Boolean TRUE Determines if the signal is filtered. If FALSE, the sig-
nal is not filtered, butOutGainis still applied.
l Modifier: XOR
l Modifier_default: TRUE

Filter1_Fre-
quency1–Fil-
ter5_
Frequency5

float32 1.0 Specifies the frequency in Hertz. For BandPass,
BandPassUnityGain, and PeakingEQ, this variable
specifies passband's center frequency. For Notch fil-
ter, this variable specifies stopband's center fre-
quency. For LowPass and HighPass, this variable
specifies corner (-3 dB) frequency. For LowShelf and
HighShelf, this variable specifies midpoint frequency.
Range of is [20, 24000).
l Modifier: multiply (*)
l Modifier_default: 500

Filter1_Gain_
dB1–Filter5_
Gain_dB5

float32 0.0 Specifies the gain value in dB. For PeakingEQ,
HighShelf, and LowShelf, this variable specifies gain
applied to passband. Range is [-50,50].
l Modifier: add (+)
l Modifier_default: 0.0

OutGain1–
OutGain5

float32 0.0 Specifies gain in linear scale. For all filters, this vari-
able specifies gain applied to post-filtered signal.
This variable takes effect even if Enable results in
FALSE and if FilterType isOFF. The range of this
variable is [0, 316.2277], and a setting of 1.0 cor-
responds to a gain of 0 dB. These variables are only
visible in Full View, not Filter View.
l Modifier: multiply (*)
l Modifier_default: 1.0

124 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Filter1_
QFactor1–Fil-
ter5_QFactor5

float32 1.0 Specifies bandwidth for BandPass, BandPassUn-
ityGain, Notch, and PeakingEQ ; the higher this
value, the smaller the bandwidth. For HighPass,
LowPass, HighShelf, and LowShelf, this variable spe-
cifies the roll-off or corner frequency gain; the higher
this value, the steeper the roll-off and higher the gain
at corner frequency. This variable's range is (0, 16),
and setting this variable to a 0 value or lower results
in a default of 0.707107.
l Modifier: multiply (*)
l Modifier_default: 0.7071

Table 147: 5BandFilter control inputs

Table 148, "5BandFilter internal parameters" below lists and describes 5BandFilter internal
parameter variables:

Name Type Default
Value

Description

Filter1_Fil-
terType1–Fil-
ter5_
FilterType5

filter_type3 LowPass Determines the type of filter applied to the input sig-
nal. If no filtering is desired, set FilterType toOFF.

Filter1_
Order1–Fil-
ter5_Order5

filter_order _12dB_Per_
Octave

Determines the order of the filter applied to the input
signal. The second, fourth, and sixth orders are avail-
able, corresponding to 12, 24, and 36 dB per octave
roll-off in LowPass, HighPass, LowShelf, and
HighShelf filters and 6, 12, and 18 dB per octave roll-
off in BandPass, BandPassUnityGain, Notch and
PeakingEQ filters, assumingQFactor is fixed at
0.7071. Generally, the higher this variable, the
steeper the roll-offs.

Table 148: 5BandFilter internal parameters

7.2 Engine
Summary: Engine recreates the tones for a single jet engine.

Description: Engine provides a composite sound for an engine. The component includes two
principal sources for noise and three independent whine tones. You can tune the overall
sound based on manipulating the driving parameters for the noises, whines, and overall gain
control.

Copyright © 2025 Advanced Simulation Technology inc. 125

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 149, "Engine audio output" below lists and describes the Engine audio output variable:

Name Type Default
Value

Description

OutputSignal audio N/A The audio output signal from Engine.

Table 149: Engine audio output

Table 150, "Engine control inputs" on page 128 lists and describes Engine control input vari-
ables:

Name Type Default Value Description
Noise1Filter1

NoiseFilter1_GainInput float32 1.0 Control connection for the Noise 1 gain.

GainFunction function <Select> Connection to selected table or function
for controlling noise gain based on
NoiseFilter1_GainInput.

GainFunctionScalar float32 1.0 Scaling factor for the Noise 1 gain con-
trol.

GainResult float32 1.0 Final gain factor for the Noise Source 1.

NoiseFilter1_Fre-
quencyInput

float32 1.0 Control connection for the Noise 1 fre-
quency.

FrequencyFunction function <Select> Connection to selected table or function
for controlling noise frequency based on
the NoiseFilter1_FrequencyInput.

FrequencyFunctionScalar float32 1.0 Scaling factor for the Noise 1 frequency
control.

FrequencyResult float32 10.0 Final frequency factor for the Noise
Source 1.

Noise2Filter2

NoiseFilter2_GainInput float32 1.0 Control connection for the Noise 2 gain.

GainFunction function <Select> Connection to selected table or function
for controlling noise gain based on the
NoiseFilter2_GainInput.

GainFunctionScalar float32 1.0 Scaling factor for the Noise 2 gain con-
trol.

GainResult float32 1.0 Final gain factor for the Noise Source 2.

NoiseFilter2_Fre-
quencyInput

float32 1.0 Control connection for the Noise 2 fre-
quency.

126 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description
FrequencyFunction function <Select> Connection to selected table or function

for controlling noise frequency based on
the NoiseFilter2_FrequencyInput.

FrequencyFunctionScalar float32 1.0 Scaling factor for the Noise 2 frequency
control.

FrequencyResult float32 10.0 Final frequency factor for the Noise
Source 2.

WhineTone1

WhineTone1_GainInput float32 0.0 Control connection for the Whine 1 gain.

GainFunction function <Select> Connection to selected table or function
for controlling whine gain based on the
WhineTone1_GainInput

GainFunctionScalar float32 1.0 Scaling factor for the Whine 1 gain con-
trol.

GainResult float32 0.0 Final gain factor for the Whine 1.

WhineTone1_Frequency float32 1.0 Frequency in Hertz of the Whine 1 tri-
angle wave.

WhineTone2

WhineTone2_GainInput float32 0.0 Control connection for the Whine 2 gain.

GainFunction function <Select> Connection to selected table or function
for controlling whine gain based on the
WhineTone2_GainInput.

GainFunctionScalar float32 1.0 Scaling factor for the Whine 2 gain con-
trol.

GainResult float32 0.0 Final gain factor for the Whine 2.

WhineTone2_Frequency float32 1.0 Frequency in Hertz of the Whine 2 tri-
angle wave.

WhineTone3
WhineTone3_GainInput float32 0.0 Control connection for the Whine 3 Gain.

GainFunction function <Select> Connection to selected table or function
for controlling whine gain based on the
WhineTone3_GainInput.

GainFunctionScalar float32 1.0 Scaling factor for the Whine 3 gain con-
trol.

GainResult float32 0.0 Final gain factor for the Whine 3.

Copyright © 2025 Advanced Simulation Technology inc. 127

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description
WhineTone3_Frequency float32 1.0 Frequency in Hertz of the Whine 3 tri-

angle wave.

OutGain float32 1.0 Applies amplitude gain control to output
signal. If no external control is connected
toOutGain, scale factor functions as
OutGain.

Table 150: Engine control inputs

7.3 EngineLevelD
Summary: EngineLevelD is a high-fidelity engine component that can recreate intake hisses,
combustion roar, blade and tip buzz, and characteristic whine tones.

Description: EngineLevelD provides a composite sound for engines at the highest fidelity
level required by the FAA. The component includes five principal sources for noise, includ-
ing the following:

l The impact of the blade movement through air

l The effects of air velocity

l The noise effect based on aircraft altitude

l The noise effect of engine fuel consumption

l The noise effect of the engine ignition

To tune the overall sound, manipulate the revolutions per minute (RPM), airspeed, fuel flow,
and overall gain control.

Table 151, "EngineLevelD control inputs" on the facing page lists and describes
EngineLevelD control input variables:

Name Type Default
Value

Description

Airspeed float32 1.0 Provides the control of the airspeed, which
drives the intake hiss sound.

Altitude float32 1.0 Provides a gain effect based on altitude; input
affects the overall output of EngineLevelD.

EngineLit Boolean TRUE Controls when the igniters light the fuel in the
engine.

128 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

FuelFlow float32 1.0 The rate of fuel consumed by the engine, typ-
ically pounds per hour.

N1_RPM float32 1.0 Provides control for the first stage of blade
RPM.

N2_RPM float32 1.0 Provides control for the second stage of blade
RPM.

OutputGain float32 1.0 Applies the overall composite gain control.

Table 151: EngineLevelD control inputs

Table 152, "EngineLevelD internal parameters" on page 131 lists and describes
EngineLevelD internal parameter variables:

Name Type Default Value Description

Altitude

Gain_Table function <Select> Pointed to a table to control the altitude effect
based on the Altitude input.

Gain float32 1.0 Gain result for the Altitude effect.

Combustion_Fuelflow

Freq_Table function <Select> Pointer to a table to control the frequency of the
combustion effect based on FuelFlow.

Gain_Table function <Select> Pointer to a table to control the gain of the com-
bustion effect based on FuelFlow.

Frequency float32 10.0 Frequency result for the combustion effect.

Gain float32 1.0 Gain result for the combustion effect.

ExhaustRoar_FuelFlow

Freq_Table function <Select> Pointer to a table to control the frequency of the
exhaust roar effect based on FuelFlow.

Gain_Table function <Select> Pointer to a table to control the gain of the
exhaust roar effect based on FuelFlow.

Frequency float32 10.0 Frequency result for the exhaust roar effect.

Gain float32 1.0 Gain result for the exhaust roar effect.

IntakeHiss_Airspeed

Freq_Table function <Select> Pointer to a table to control the frequency of the
intake hiss effect based on airspeed.

Copyright © 2025 Advanced Simulation Technology inc. 129

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

Gain_Table function <Select> Pointer to a table to control the gain of the
intake hiss effect based on airspeed.

Frequency float32 1.0 Frequency result for the intake hiss based on
airspeed effect.

Gain float32 1.0 Gain result for the intake hiss based on air-
speed effect.

IntakeHiss_RPM

Freq_Table function <Select> Pointer to a table to control the frequency of the
intake hiss effect based on N1 RPM.

Gain_Table function <Select> Pointer to a table to control the gain of the
intake hiss effect based on N1 RPM.

Frequency float32 1.0 Frequency result for the intake hiss based on
RPM effect.

Gain float32 1.0 Gain result for the intake hiss based on RPM
effect.

RotatingMachinery_RPM

Freq_Table function <Select> Pointer to a table to control the frequency of the
rotating machinery effect based on N1 RPM.

Gain_Table function <Select> Pointer to a table to control the gain of the rotat-
ing machinery effect based on N1 RPM.

Frequency float32 1.0 Frequency result for the rotating machinery
based on RPM effect.

Gain float32 1.0 Gain result for the rotating machinery based on
RPM effect.

TurboFan1_RPM

Freq_Table function <Select> Pointer to a table to control the frequency of the
Fan effect based on N1 RPM.

Gain_Table function <Select> Pointer to a table to control the gain of the Fan
effect based on N1 RPM.

Frequency float32 1.0 Frequency result for the Fan based on RPM
effect.

Gain float32 1.0 Gain result for the Fan based on RPM effect.

TurboFan2_RPM

130 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

Freq_Table function <Select> Pointer to a table to control the frequency of the
Fan effect based on N1 RPM.

Gain_Table function <Select> Pointer to a table to control the gain of the Fan
effect based on N1 RPM.

Frequency float32 1.0 Frequency result for the Fan based on RPM
effect.

Gain float32 1.0 Gain result for the Fan based on RPM effect.

Whine_1–Whine_6

Frequency_
Table

function <Select> Pointer to a table to control the frequency of the
Whine effect based on N1 or N2 RPM.

Gain_Table function <Select> Pointer to a table to control the gain of the
Whine effect based on N1 or N2 RPM.

Frequency float32 1.0 Frequency result for the Whine based on RPM
effect.

Gain float32 1.0 Gain result for the Whine based on RPM effect.

Freq_N1(0)_
Drive, Freq_N2
(1)_Drive

float32 0.0 Switch to select N1 or N2 as source RPM for
Frequency_Table drive.

Gain_N1(0)_
Drive,Gain_N2
(1)_Drive

float32 0.0 Switch to select N1 or N2 as source RPM for
Gain_Table drive.

Table 152: EngineLevelD internal parameters

7.4 MultiFilter
Summary: Expanded version of the Filter.MultiFilter has a variety of basic filter types and
the ability to define the filter order.

Description:MultiFilter filters a signal using one of the basic filter types described below:

l Off: no filtering occurs.

l OutGain: affects OutSignal amplitude.

l LowPass: basic LowPass filter; frequency content below the specified frequency is
passed through and content above is attenuated.

l HighPass: basic HighPass filter; frequency content below the specified frequency is
attenuated, content above is passed through.

Copyright © 2025 Advanced Simulation Technology inc. 131

Studio Components Reference Guide (Rev. T, Ver. 0)

l BandPass: basic BandPass filter; frequency content ranging from StartBand to
EndBand is passed through; content outside of this range is attenuated.

l BandPassUnityGain: same as the BandPass filter except the amplitude of the
BandPassFilter is scaled by 1/QFactor resulting in a 0 dB peak gain, whereas the nor-
mal BandPassFilter has a peak gain of Q.

l Notch: basic Notch filter; frequency content at the specified frequency is attenuated.

l AllPass: basic AllPass filter; no frequency is attenuated.

l PeakingEQ: basic Peak filter; frequency content near the specified frequency is boosted
or attenuated by the Gain_dB control.

l LowShelf: basic LowShelf filter; frequency content below the specified frequency is
boosted or attenuated by the Gain_dB control.

l HighShelf: basic HighShelf filter; frequency content above the specified frequency is
boosted or attenuated by the Gain_dB control.

If the filter is not enabled, the incoming InSignal is passed through unprocessed but poten-
tially modified by the OutGain control. For a true bypass ofMultiFilter, ensure OutGain res-
ults in 1.0 and Enable or FilterType results in FALSE or OFF.

Table 153, "MultiFilter audio input and output" below lists and describesMultiFilter audio
input and output variables:

Name Type Default Value Description

Audio Input

InSignal audio N/A The audio signal to be filtered.

Audio Output

OutSignal audio N/A The signal after it is filtered.

Table 153: MultiFilter audio input and output

132 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 154, "MultiFilter control inputs" on the next page lists and describesMultiFilter con-
trol input variables:

Name Type Default
Value

Description

Enable Boolean TRUE Determines if the signal is filtered. If this variable res-
ults in FALSE, the signal is not filtered, butOutGain
is still applied.
l Modifier: XOR
l Modifier_default: FALSE

Frequency float32 1.0 Specifies the frequency in Hertz. For BandPass,
BandPassUnityGain, and PeakingEQ, this variable
specifies the passband's center frequency. For
Notch, this variable specifies the stopband's center
frequency. For LowPass and HighPass, this variable
specifies corner (-3 dB) frequency. For LowShelf and
HighShelf, this variable specifies the midpoint fre-
quency. This variable's range is [20, 24000).
l Modifier: multiply (*)
l Modifier_default: 500

Gain_dB float32 0.0 Specifies a gain value in dB. For PeakingEQ,
HighShelf, and LowShelf, this variable specifies gain
applied to the passband. This control's range is [-50,
+50].
l Modifier: add (+)
l Modifier_default: 0.0

OutGain float32 0.0 Specifies the gain in linear scale. For all filters, this
control specifies the gain applied to the post-filtered
signal. This variable takes effect even if Enable is
FALSE and FilterType isOFF. This control's range is
[0, 316.2277]; a 1.0 setting corresponds to 0 db gain.
l Modifier: multiply (*)
l Modifier_default: 1.0

Copyright © 2025 Advanced Simulation Technology inc. 133

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

QFactor float32 1.0 Filter quality factor that specifies the bandwidth for
BandPass, BandPassUnityGain, Notch, and Peak-
ingEQ; the higher this value, the smaller the band-
width. StartBand and EndBand adjust according to
QFactor and are not adjustable in display. For
HighPass, LowPass, HighShelf, and LowShelf, this
variable specifies roll-off/corner frequency gain; the
higher this value, the steeper the roll-off and the
higher the gain at the corner frequency. This control's
range is (0, 16). Setting this control to a value of 0 or
lower defaults the control to 0.707107.
l Modifier: multiply (*)
l Modifier_default: 0.7071

Table 154: MultiFilter control inputs

134 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 155, "MultiFilter internal parameters" below lists and describesMultiFilter internal
parameter variables:

Name Type Default
Value

Description

EndBand float32 965.4772 Specifies the end of the bandwidth affected by the fil-
ter settings. Not adjustable. For BandPass,
BandPassUnityGainand Notch, this variable spe-
cifies the right -3 dB corner frequency in Hertz. For
PeakingEQ filters, this specifies the midpoint fre-
quency in Hertz.

FilterType filter_type3 LowPass Determines the type of filter applied to the input sig-
nal. To disable filtering, set FilterType toOFF.

Order filter_order _12dB_Per_
Octave

Determines the order of the filter applied to the input
signal. Second, fourth, and sixth orders are available,
corresponding to 12, 24, and 36 dB per octave roll-off
in LowPass, HighPass, LowShelf, and HighShelf fil-
ters and 6, 12, and 18 dB per octave roll-off in
BandPass, BandPassUnityGain, Notch and Peak-
ingEQ, assumingQFactor is fixed at 0.7071. Gen-
erally, the higher this control, the steeper the roll-offs.

StartBand float32 258.9393 Specifies the start of the bandwidth affected by the fil-
ter settings. Not adjustable. For BandPass,
BandPassUnityGain, and Notch, this specifies the
left -3 dB corner frequency in Hertz. For PeakingEQ,
this variable specifies the midpoint frequency in
Hertz.

Table 155: MultiFilter internal parameters

7.5 PropRotor
Summary: PropRotor generates the composite sound for a rotating helicopter blade.

Description: PropRotor includes the three principal sources of noise:

l Air noise from the movement of air over the blades

l Force noise from the impact of the blade with the air medium

l Thickness of noise due to the dual edge sound sources on a blade

Tune the overall sound based upon blade parameters, such as radius and blade count. Overall
gain control is based on both revolutions per minute (RPM) and blade angle.

Copyright © 2025 Advanced Simulation Technology inc. 135

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 156, "PropRotor audio input and output" below lists and describes the PropRotor
audio input and output variables:

Name Type Default Value Description

Audio Input

InSignal audio N/A Link to external noise source. To be used instead of
the PropRotor internal noise source if desired.

Audio Output

OutputSignal audio N/A Audio output from PropRotor.

Table 156: PropRotor audio input and output

136 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 157, "PropRotor control inputs" below lists and describes PropRotor control input vari-
ables:

Name Type Default
Value

Description

Angle float32 1.0 Provides the blade angle value.

ForceGain float32 1.0 The gain for the principle component of the blade
sound due to the air force on the blade. If a function
connection is not made, this gain equals the scale
factor.

LagFilter float32 1.0 Provides a limiting filter used for fade-in and fade-
out effects.

NoiseGain float32 1.0 The gain for the air noise part of the blade sound.

If the function connection is not made, then Noise
Gain = Scale Factor.

OutputGain float32 1.0 Amplitude gain of prop/rotor output. If the gain con-
nection is blank, then the gain scale factor equals
the gain value. Otherwise,Gain = Scale Factor ×
Output, whereOutput represents the output result
of the control component.

Radius float32 1.0 Scales the tip mach speed based on the blade
radius (m).

RPM float32 1.0 Frequency in RPM of the rotor shaft.

ThicknessGain float32 1.0 Gain of the airflow sound determined by blade thick-
ness.

QFactor float32 1.0 Quality factor for the air noise filter. If theQFactor
connection is blank then theQ scale factor equals
theQ value.Q = Scale Factor ×Output, whereOut-
put represents the output result of the control
object.

Table 157: PropRotor control inputs

Copyright © 2025 Advanced Simulation Technology inc. 137

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 158, "PropRotor internal parameters" below lists and describes PropRotor internal
parameter variables:

Name Type Default
Value

Description

FilterFreqScale float32 4.0 The scale factor for noise filter roll-off frequency.

FilterType filter_type2 BandPassQ Selects a two-pole filter type from the following:
l Lowpass
l Bandpass
l Highpass
l LowpassQ
l BandpassQ
l HighpassQ

The latter three are amplitude-adjusted such that
the filter has unity gain at the roll-off frequency
and maintains this gain as the quality factor
increases. For the bandpass filters, the lowpass
and highpass poles have the same roll-off fre-
quency.

MachLimit float32 .950 A limit for the calculated tip mach speed. This
keeps the maximummach speed to a pre-
determined maximum. Usually 0.95 and 0.99,
depending how dominant a thickness noise is
required. The sound model is not accurate above
0.99 since supersonic effects start to dominate
the sound spectrum.

NumberOfBlades uint8 6 Number of blades on the shaft.

Table 158: PropRotor internal parameters

7.6 SpeakerEQ
Summary: SpeakerEQ automatically equalizes a speaker by comparing referenced and meas-
ured sound responses.

Description: SpeakerEQ has three different modes of operation. PASS_THROUGH mode
sends the ModelIn input signal directly to the speaker, disabling the filters. Use this mode to
initially test the component during model setup. A ModeControl value of 0 initiates PASS_
THROUGH mode.

138 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

ANALYZE_REFERENCE mode compares reference audio (i.e., ReferenceIn) to microphone
audio (i.e., MicIn) and generates filters for speaker equalization. In other words, SpeakerEQ
changes the filter settings applied to the ModelIn signal and analyzes how those changes
impact the MicIn signal. A ModeControl value of 1 sets the component to ANALYZE_
REFERENCE mode.

During ANALYZE_SPEAKER mode, SpeakerEQ routes ModelIn audio from the sim-
ulation's sound model to the speaker. A reference microphone connected to an ACU2 collects
and returns the speaker frequency response via the MicIn input. SpeakerEQ then compares
the microphone audio to the pink noise ReferenceIn signal, which represents a flat frequency
response. SpeakerEQ applies a set of filters to the MicIn signal so the speaker’s frequency
response matches ReferenceIn and ModelIn. It then routes the equalized sound back to the
speaker via OutSignal. By default, analysis takes 90 seconds to complete and automatically
transitions to PROCESS mode.

Note: While a flat frequency response is ideal in most cases, the component can match any
reference response curve.

Figure 19, "SpeakerEQ Analyze mode" below shows SpeakerEQ's feedback loop during
ANALYZE mode:

Figure 19: SpeakerEQ ANALYZE mode

PROCESS mode maintains the speaker's equalization. During PROCESS mode, the com-
ponent applies a bank of audio filters to the ModelIn signal and sends the result to OutSignal.
During PROCESS mode, it saves the filters' frequencies and gains to a file and recalls them
during project installation. Back up and restore these speaker-specific features in the Telestra
web interface. A ModeControl value of 3 initiates PROCESS mode.

Copyright © 2025 Advanced Simulation Technology inc. 139

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 159, "SpeakerEQ audio inputs" below lists and describes SpeakerEQ's audio input
variables:

Name Type Default
Value

Description

MicIn audio N/A Audio coming from the spectral analysis microphone.

ReferenceIn audio N/A A signal with a frequency response curve. This input
sets a reference signal used in the analysis. Most of
the time, ReferenceIn uses pink noise, which rep-
resents a flat frequency response (i.e., feedback with
minimal distortion from the speaker). ReferenceIn is
only used for tuning.

ModelIn audio N/A Simulation audio from the AuralCue sound model to
which you will apply the filter.

Table 159: SpeakerEQ audio inputs

Table 160, "SpeakerEQ audio output" below lists and describes SpeakerEQ's audio output
variable:

Name Type Default
Value

Description

OutSignal audio N/A Filtered audio output that usually routes to the
speaker.

Table 160: SpeakerEQ audio output

140 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 161, "SpeakerEQ control inputs" below lists and describes SpeakerEQ control input
variables:

Name Type Default
Value

Description

ModeControl uint8 0 A value of 1 runs SpeakerEQ through two states:
l ANALYZE: compares reference audio to micro-
phone audio

l PROCESS: applies a filter yielding a flat response

A value of 0 setsModeControl in PASS_THROUGH
mode, which disables the current filter. A value of 3
sets SpeakerEQ's state to PROCESS using the
default saved filter, if one exists.

MaxBoost_dB float64 6.0 The maximum filter boost that the filter applies for any
given third octave frequency band, measured in
decibels. If you notice a steady state difference
between the filtered audio and reference audio,
increase the value by that number.

Table 161: SpeakerEQ control inputs

Table 162, "SpeakerEQ control output" below lists and describes the SpeakerEQ control out-
put variable:

Name Type Default
Value

Description

ModeOut ModeOut N/A SpeakerEQ's current state:
l 0 = PASS_THROUGH
l 1 = ANALYZE
l 3 = PROCESS

Use this variable to control host feedback. When
equalization is complete,ModeOut automatically
changes to PROCESS.

Table 162: SpeakerEQ control output

Copyright © 2025 Advanced Simulation Technology inc. 141

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 163, "SpeakerEQ internal parameters" below lists and describes SpeakerEQ internal
parameters and debugging variables:

Name Type Default
Value

Description

SpeakerNumber int32 0 A unique number that identifies each
speaker.

NumTuningPasses int32 10 The total number of passes. For higher
accuracy, let NumTuningPasses cycle
more than 10 times.

PassDuration float64 9.0 The approximate duration of each pass in
seconds.

AnalysisCutoffFreqHigh int32 0 Above a certain frequency, does not apply
the correction filter to the signal; measured
in hertz (Hz). For example, a typical high
cutoff frequency for a subwoofer is 200 Hz.

AnalysisCutoffFreqLow int32 0 Below a certain frequency, this variable
does not apply the correction filter to the
signal; measured in Hz. For example, a typ-
ical low cutoff frequency for a bookshelf
speaker is 150 Hz.

Table 163: SpeakerEQ internal parameters

Table 164, "SpeakerEQ debugging variables" below lists and describes SpeakerEQ debug-
ging variables:

Name Type Default
Value

Description

CurrentAPass int32 0 Displays a number ranging from 1 to (NumTun-
ingPasses value × 10), indicating the progress of
each pass.

CurrentTPass int32 0 Displays current pass number.

Table 164: SpeakerEQ debugging variables

142 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

7.6.1 Set up and run SpeakerEQ

To set up and run SpeakerEQ, follow these steps:

1. In Studio Project Manager, on the Icon View tab, go to Telestra Server ().

Figure 20: Open Studio Viewer Telestra Server

2. In Studio Viewer Telestra Server, under System Load, choose a simulation model
for SpeakerEQ (e.g., AuralOuts).

Figure 21: Select simulation model

3. Right-click in Views, and select Add from the list.

4. In Add to Model : Model Name, expand EnvCue, and select SpeakerEQ.

5. (Optional) In Item Name, enter a name for the SpeakerEQ component.

Copyright © 2025 Advanced Simulation Technology inc. 143

Studio Components Reference Guide (Rev. T, Ver. 0)

6. Select Add, and wait for the component to install. When “Added Successfully” dis-
plays, close the window.

Figure 22: Add SpeakerEQ component to model

7. In Views, open the new SpeakerEQ component.

8. From Data Viewer, next to SpeakerNumber, double-click in the Value column.

9. In Set Value, enter an ID number for the speaker, and select OK.

Figure 23: Set SpeakerNumber value

144 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

10. Set the AnalysisCutoffFreqHigh and AnalysisCutoffFreqLow values applicable to your
speaker type. Values are measured in Hertz (e.g., enter 10,000 for 10 kHz).

Figure 24: Set AnalysisCutoffFreq values

11. Link MicIn to an existing ACU2channel. For more information about ACU2channel,
go to Section 11.4, "ACU2channel" on page 181.

Caution: To avoid damaging your speakers, do not run SpeakerEQ without con-
necting a microphone to MicIn.

Copyright © 2025 Advanced Simulation Technology inc. 145

Studio Components Reference Guide (Rev. T, Ver. 0)

12. Link ReferenceIn and ModelIn to an existing Playsound or NoiseSource component
with pink noise. For a flat frequency response, ensure ReferenceIn and ModelIn match.

Note: Playsound or NoiseSource serve as a substitute during tuning. Once tuning is
complete, you may want to replace the pink noise with a component containing audio
from your simulation model.

Figure 25: Set MicIn, ReferenceIn, and ModelIn audio inputs

For more information about Playsound, go to Section 2.17, "Playsound" on page 42.
For more information about NoiseSource, go to Section 2.14, "NoiseSource" on
page 36.

13. Next to ModeControl, double-click inModifier. In Set Modifier Value, enter 1, and
select OK.

146 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

14. Wait for SpeakerEQ to cycle through the set number of passes in CurrentTPass
Value. By default, it runs through 10 passes. When finished, ActiveMode displays
“PROCESS,” and CurrentAPass and CurrentTPass display “0.”

Figure 26: PROCESS mode

7.6.2 Tune SpeakerEQ

After you set and run SpeakerEQ, compare the MicIn and ReferenceIn signals for audio dif-
ferences. If needed, adjust their frequencies, and rerun the component. To tune SpeakerEQ,
follow these steps:

1. In Data Viewer, expand MicIn. Next to audio, in the Value column, open View
Scope.

Figure 27: View MicIn scope

Copyright © 2025 Advanced Simulation Technology inc. 147

Studio Components Reference Guide (Rev. T, Ver. 0)

The /Component - AnalyzerIn(Result).audio window opens, displaying the MicIn sig-
nal.

Figure 28: MicIn audio signal

2. In Data Viewer, expand ReferenceIn. Next to audio, in the Value column, right-click
View Scope, point to Add to Scope, and select the ReferenceIn audio file.

Figure 29: Add ReferenceIn to scope

148 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

3. In the Scope, on the File menu, select Change Layout.

Figure 30: Change Layout

4. In Change Layout, select the list, and then select Comparison. In Comparison,
select OK.

Figure 31: Comparison layout

Copyright © 2025 Advanced Simulation Technology inc. 149

Studio Components Reference Guide (Rev. T, Ver. 0)

5. The scope view now displays a comparison of the MicIn and ReferenceIn signals. In Y
Range, enter 20, and press Enter.

Figure 32: MicIn/ReferenceIn comparison

In the example above, the top comparison shows a steady state difference of 5 decibels
(dB), whereas the bottom comparison shows equalized audio.

6. If a difference greater than 2 dB exists, check the recommended high and low cutoff
frequencies for your speaker type.

7. Increase MaxBoost_dB by the difference amount (e.g., 5 dB), and rerun SpeakerEQ.

Caution: To avoid damaging the speaker, check your speaker's limitations before
adjusting MaxBoost_dB.

8. If a difference still exists, lower ReferenceIn's gain, and rerun SpeakerEQ.

9. If your speaker setup changes after tuning, reprocess SpeakerEQ to ensure the speak-
ers are still equalized correctly. To put the component in PROCESS mode, set
ModeControl to 3, and save your changes.

150 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

7.7 VibrationCapture
Summary: The VibrationCapture component records an input signal specifically for use
with ASTi’s Vibration Analysis tool kit.

Description: This component is a simplified version of RecordReplay. The capture length
defaults to 30 seconds, and continuous recording is not allowed. The Record parameter con-
trols the recording, when true recording begins.

The captured file results in a Telestra sound recording (.tsr) file with 32-bit float values recor-
ded at 48 kHz with a name based on the GroupID and SoundIndex. The file is written to the
hard drive under /var/local/asti/recordreplay. VibrationCapture always starts recording at the
beginning of the file, and it cannot start in the middle. The recording always overwrites the
file from the beginning.

Table 165, "VibrationCapture audio input" below lists and describes the VibrationCapture
audio input variable:

Name Type Default
Value

Description

SignalIn audio N/A Audio linked into this position is recorded and written
to the record file on the hard drive.

Table 165: VibrationCapture audio input

Table 166, "VibrationCapture control inputs" below lists and describes VibrationCapture
control input variables:

Name Type Default
Value

Description

Gain float32 1.0 Amplitude gain control for the capture file, which can
be set via the host or internally.

SoundIndex uint16 0 Identifies the file. Each file is organized as part of a
group with a specific index that names the Tracker
Status Report file. The file is written to the hard drive
under /var/local/asti/recordreplay.

Table 166: VibrationCapture control inputs

Copyright © 2025 Advanced Simulation Technology inc. 151

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 167, "VibrationCapture control outputs" below lists and describes VibrationCapture
control output variables:

Name Type Default
Value

Description

FileMode player_state STOPPED Displays the recording state of the file. Possible
states are STOPPED and RECORDING.

Record Boolean FALSE When TRUE, the component starts recording.

Table 167: VibrationCapture control outputs

Table 168, "VibrationCapture internal parameter" below lists and describes the Vibra-
tionCapture internal parameter variable:

Name Type Default
Value

Description

Length uint32 30 Set to the number of seconds to record vibration at a
48 kHz sample rate. A value of 30 is the expected
length for the Vibration Analysis.

Table 168: VibrationCapture internal parameter

7.8 FilterBank
Summary: FilterBank is a simple method of installing a series bank of 15 configurable fil-
ters in a signal path.

Description: FilterBank points to a filter stored in a FilterPlan available for viewing and
adjustment from the Project Manager. Each filter is comprised of 15 filters in series. Each
of these 15 filters is fully configurable from the FilterPlan.

Table 169, "FilterBank audio input and output" below lists and describes FilterBank audio
input and output variables:

Name Type Default Value Description

Audio Inputs

InSignal audio N/A Audio input that FilterBank filters.

Audio Outputs

OutSignal audio N/A Filtered audio output from FilterBank.

Table 169: FilterBank audio input and output

152 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 170, "FilterBank control inputs" below lists and describes FilterBank control inputs:

Name Type Default
Value

Description

FilterName filter_name N/A Pointer to a bank of 15 filters in the FilterPlan.

MasterGain float32 1.0 Gain applied to FilterBank's audio output.

Table 170: FilterBank control inputs

7.9 FilterPlan
Summary: FilterPlan is a storage and management location for a set of filters that the Fil-
terBank component may reference.

Description: In FilterPlan, store filters by name. Each filter contains 15 filter sections,
which you can designate as one of the following types:

l LowPass

l HighPass

l BandPass

l BandPassUnityGain

l Notch

l AllPass

l PeakingEQ

l LowShelf

l HighShelf

In each filter section, store the following values:

l CenterFrequency

l QFactor

l Gain (dB)

You can also set and store the set's MasterGain. To implement FilterPlan edits when apply-
ing changes, select Notify Telestra Server. As a result, you won't need to save and reload the
layout after every change.

Copyright © 2025 Advanced Simulation Technology inc. 153

Studio Components Reference Guide (Rev. T, Ver. 0)

8.0 Highway Service
Summary: Highway Service provides audio distribution for aural cues from components in
Telestra to the outside world. The need for a specialized service to handle aural cue audio is
driven by the fact that aural cues are generated by multiple sources whose output is typically
sent to multiple channels (e.g., left speaker, right speaker). Highway Service handles both the
mixing of audio from multiple sources and the routing of the composite audio to multiple
channels.

Highway Service supports 128 independent output channels. The service receives audio from
a set of Balancers. Each Balancer sends a stream of audio to the service with applied gains
for the audio on each of the 128 highways. The service mixes the audio sources for a given
highway to create a composite audio stream for each highway. The service applies highway
gains that it receives from HighwayGain. This set of gains includes an overall output gain
that affects all highways and individual highway gains that affect all audio on a given high-
way. The service sends the composite audio to HighwayOut, which is tuned to one and only
one highway. Highway Service supports input connections from only Balancer and High-
wayGain and output connections to only HighwayOut.

As with all service components, you cannot manually instigate the creation of the service
object. Instead, the loader automatically creates service objects on demand when it detects
that a component has a Highway Service port connection. Only one Highway Service is
loaded in a model based on the first found need for a service of this type.

Description: Highway Service receives an audio input and an array of 128 gain values, one
for each highway, and from Balancer. The Highway Service can connect to up to 1,024 Bal-
ancers. The connection from Balancer to Highway Service is unidirectional for audio data.
The Balancer is always the audio source while the highway service is always the audio sink.

For each Balancer connection, the highway service makes 128 copies of the audio and
applies a different gain value to each copy. The gain values come from the gain value array
that Balancer provides. The output from this step is a set of 128 audio streams, one for each
highway, per Balancer.

Highway Service mixes the audio from the various Balancers for a given highway into a
final audio output for that highway.

Highway Service also receives an input connection from HighwayGain, which provides an
overall output gain and 128 individual highway gains. The highway service applies the gains
it receives from HighwayGain to the composite audio on each highway. Each model may
contain only one HighwayGain. The model loader throws an error you attempt to add a
second HighwayGain. If there is a HighwayGain in the model, the highway service uses a
value of 1.0 for these gains.

The output connection from Highway Service goes to a HighwayOut. This output con-
nection is unidirectional for audio data. Highway Service is always the audio source while
HighwayOut is always the audio sink. Multiple HighwayOuts may point to the same high-
way channel.

154 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

The service must also support the flow through Active_TX to indicate the state of audio activ-
ity on a highway. Only set Active_TX if audio is present and a non-zero gain value at a given
point in the path.

Highway Service also supports diagnostic facilities to allow you to view the use of a high-
way within the model and the current highway gain settings. This functionality scans the
model for all HighwayOuts and HighwayGains, and extracts the information into a table-
like view, as demonstrated in the following example:

The handle view displays all HighwayOuts, including paths connected to each handle and
gains associated with each highway.

The following text shows an example of displayed information:

Overall Output Gain = 1.0

Left_Speaker (Gain = 0.5) --->

Aural_Cues / Left_Speaker_Sounds > HighwayOutput_A

Aural_Cues / Left_Speaker_Sounds > HighwayOutput_B

Seat_Shaker (Gain = 0.8) --->

Some_Folder1 / Some_Folder2 / Vibration_Output > HighwayOutput_C

8.1 AuralCue
Summary: Inputs audio into the Highway Service and associates the audio with a name or
“cue ID.”

Description: AuralCue places an audio signal on a bus in the speaker service. From here,
AuralCuePosn references that particular bus and gives it a position in the 3D audio envir-
onment. At this point, SpeakerOutput retrieves the audio at the correct amplitude and phases
to position the sound correctly in the 3D environment.

Table 171, "AuralCue audio input" below lists and describes the AuralCue audio input vari-
able:

Name Type Default
Value

Description

InSignal audio N/A The audio signal routed to a specific position.

Table 171: AuralCue audio input

Copyright © 2025 Advanced Simulation Technology inc. 155

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 172, "AuralCue control input" below lists and describes the AuralCue control input:

Name Type Default
Value

Description

Gain float32 1.0 A gain applied to the input audio streams.

Table 172: AuralCue control input

Table 173, "AuralCue internal parameter" below lists and describes the AuralCue internal
parameter:

Name Type Default Value Description

Cue ID UNASSIGNED A name given to this audio source. For example,
add and select a cue called Engine and route all
engine audio into AuralCue.

Note: Generate meaningful names for better read-
ability in the model. Reference this cue name in a
corresponding component.

Table 173: AuralCue internal parameter

8.2 AuralCuePosn
Summary: Adds the selected sound to the sound field at the specified (X, Y, Z) position.

Description: In an aircraft model, you might have an AuralCuePosn with a CueID called
“LeftEngine” positioned at X= -3.0, Y= 3.0, Z= 0.0. This means that the audio fed into
CueID is positioned to the back-left of the reference point. Once a cue is added to the sound
field with this component, add either a Highway > SpeakerOutput or an AudioIO > Speak-
erOutput to get audio from the sound field.

156 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 174, "AuralCuePosn Position control inputs" below lists and describes AuralCuePosn
Position control input variables:

Name Type Default
Value

Description

X float64 0.0 X coordinate relative to the reference point. Positive
X is in front and negative X is behind reference point.

Y float64 0.0 Y coordinate relative to the reference point. Positive
Y is to left, and negative Y is to right of reference
point.

Z float64 0.0 Z coordinate relative to the reference point. Positive
Z is above, and negative Z is below the reference
point.

Table 174: AuralCuePosn Position control inputs

Table 175, "AuralCuePosn internal parameter" below lists and describes the AuralCuePosn
internal parameter variable:

Name Type Default Value Description

CueID id UNASSIGNED Selects CueID specified in AuralCue for pos-
itioning.

Table 175: AuralCuePosn internal parameter

8.3 SpeakerOutput
Summary: Retrieves audio from the Highways sound field intended for a speaker at the spe-
cified X, Y, Z position.

Description: SpeakerOutput creates a speaker in Highway Service with the specified X, Y,
and Z coordinates relative to the sound field reference point, extracting the audio from the ser-
vice for the speaker. The X, Y, and Z position should correspond to the speaker’s physical
location. Typically, AudioOut links directly to an AmpOut audio out.

For example, for an eight-channel amplifier to drive an eight-speaker setup, the model should
contain eight SpeakerOutputs linked to eight AmpOuts.

Table 176, "SpeakerOutput audio output" below lists and describes SpeakerOutput audio
output and internal parameter variables:

Name Type Default
Value

Description

AudioOut audio N/A Audio for this speaker.

Table 176: SpeakerOutput audio output

Copyright © 2025 Advanced Simulation Technology inc. 157

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 177, "SpeakerOutput internal parameters" below lists and describes SpeakerOutput
internal parameters:

Name Type Default Value Description

Position worldposition_
geocentric

(0,0,0) The X, Y, and Z position of the speaker relative
to the reference point. The coordinate system
is the same as the one used in Highway > Aur-
alCuePosn (i.e., +X is forward, +Y is to the
left, +Z is up).

SourceSpeaker id UNASSIGNED Selects the speaker for sound positioning.

Table 177: SpeakerOutput internal parameters

158 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

9.0 Highway 3D Service
The Highway 3D Service is a collection of components used for mixing and routing audio to
hardware output channels. The service provides two approaches for audio mixing:

l Gain-Mixing

l 3D Soundfield Reconstruction

These approaches are useful for a range of applications, from routing communications audio
to operator headsets to immersing listeners in a 3D audio environment.

Gain-mixing is the simpler approach and represents the more traditional way of mixing audio.
Sounds are sent to a set of output “highways” using a set of gains that are driven by the host
or calculated in the model. Gain-mixing using the Highway 3D Service allows you to easily
route audio from simulation models to hardware models, making it an attractive alternative to
using connectors and buses.

The 3D Soundfield Reconstruction (SFRC) is a sophisticated method of processing sounds to
make them appear to come from somewhere in 3D space around the listener(s). Sounds are
assigned (X, Y, Z) positions relative to the listening or reference point. The Highway 3D Ser-
vice then filters and mixes each sound based on its position in order to encode the sound into
a virtual 3D sound environment or sound field.

Once all the sounds are encoded, the sound field is decoded for playback in stereo head-
phones or an array of speakers. If decoding to headphones, two output streams are output for
the left and right earphones. The head's orientation is used in this calculation if it is available
from a head-tracking system. If decoding to a speaker array, the service outputs one audio
stream for each speaker, taking into account the speaker's (X, Y, Z) position.

All positions used in the service must be specified in meters relative to the listening or ref-
erence position. The reference position should be the central listening point of the simulator,
such as the midpoint between the pilot's and copilot's heads. This approach ensures the ser-
vice renders the sounds in a way that sounds best to all listeners.

Copyright © 2025 Advanced Simulation Technology inc. 159

Studio Components Reference Guide (Rev. T, Ver. 0)

Use the following coordinate system when calculating RelativePositions of sounds and speak-
ers:

(positive = left) (positive = forward)

Sound Field

Reference Point

units = meters

(positive = up)

x

z

y

Figure 33: RelativePositions in sound coordinate system

The 3D positioning algorithm used by the service calculates a contribution from each speaker
for each sound, even if the speaker is not precisely in the right direction. This results in real-
istic and immersive reproduction of many types of sounds.

If a sound outputs only through one speaker, use gain-mixing or connectors and buses instead
of SFRC.

Highway 3D Service requires a three-step process that includes entering audio into the ser-
vice, determining how it is mixed or processed, and extracting audio for the outputs from the
service.

The Highway 3D Service components include the following:

For input into the service: Audio Feed

l For controlling gain-mixing or 3D positioning of a sound:
o Feeders > Balancer1, 4, 8, 16
o Feeders > AuralCuePosn

l For extracting audio from the service:
o AudioIO > HighwayOut
o AudioIO > SpeakerOut
o AudioIO > Headphone3DOut

160 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

To set Highway 3D Service, follow these steps:

1. Add AudioFeed in a simulation model to input a sound into the service. Add more
AudioFeeds for other sounds if they need mixing or independent positioning. Create
and select new sound names or “cue IDs” to identify the sound in the service.

2. Add BalancerN in a Feeders model to gain-mix a sound to the output highways.
Select the cue ID of the sound used for mixing, and choose or create the highways.
Mix the sound's output highways to determine the Balancer's size. Link the gains from
the host or elsewhere in the load if desired, or just set static gains by hand.

3. Add AuralCuePosn to a Feeders model to add a sound to the 3D sound field at a spe-
cified position. Select the cue ID of the sound that is then added to the sound field.
Link to or set the (X, Y, Z) position inputs to determine the location of the sound in the
sound field.

4. Add HighwayOut in a hardware model to extract audio from one of the output high-
ways. Choose a highway and link the audio output of the component to a hardware out-
put. This component only retrieves sounds added to the highways via Balancer, not
AuralCuePosn.

5. Only sounds put onto the highways using Balancer components are retrieved by this
component, not sounds that were positioned in the sound field using the Aur-
alCuePosn component.

6. Add SpeakerOuts in a hardware model for each speaker in the simulator. Enter the
(X, Y, Z) position of the speaker, and link the audio output to a hardware output. The
service decodes the sound field to this speaker based on the specified position.

7. Add Headphone3DOut in a hardware model for operators that should have 3D audio
in their stereo headphones. If head tracker information is available from the host, link it
to the head azimuth and elevation inputs. Link the component's left and right audio out-
puts directly to the output channels for the left and right ear cups of the operator's head-
phones. Avoid adding other components between the Headphone3DOut and hardware
components. The presence of other components on these audio streams can alter the
timing and distort the apparent 3D position of the sound.

HighwayOut and SpeakerOut can be added to autogenerated hardware models using Chan-
nel Helper. Notice the Highway, Speaker, and Speaker Position options when creating ACE-
RIU, ACU2, and amplifier channels in Channel Helper. Enter a highway name to create a
HighwayOut, select the highway, and link the audio to the channel's audio out. Enter a
speaker name and position to create a SpeakerOut created at that position with its audio
linked to the channel's audio out.

Copyright © 2025 Advanced Simulation Technology inc. 161

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 34, "Gain-mixing" below shows how to use the Highway 3D Service for gain-mixing
warning tones to a set of output highways:

Highways 3D

Service

Warning Tone Model

Audio Feed
AudioIns
Cue ID: ‘warning tones’

Feeder Model

Balancer4
CueID: ‘warning tones’
Hwy1: ‘pilot headset’
Hwy 2: ‘copilot headset’
Hwy 3: ‘cockpit speaker’
Hwy 4: ‘instructor

 speaker’

Hardware Model

Highway Out
Hwy: ‘pilot headset’

Audio Out

Pilot_ACUchannel

Audio Out

Wave Wave

PlaySound

Figure 34: Gain-mixing

Figure 35, "Sound field reconstruction" below shows an example of using the Highway 3D
Service for position weapons sounds in 3D and rendering the sound field to both a speaker
array and a stereo headset:

Highways 3D

Service

Weapons Model

Audio Feed
AudioIns
Cue ID: ‘missile’

Feeder Model

AuralCuePos
CueID: ‘missile’
X: -20
Y: -20
Z: -0

Hardware Model

Speaker Out
X: 0

Y: 1

Z: 0
Audio Out

Left_Speaker

Audio Out

PlaySound

PlaySound

PlaySound

Audio Feed
AudioIns
Cue ID: ‘gun’

Audio Feed
AudioIns
Cue ID: ‘explosion’

AmpOut

Right_Speaker

Audio Out
(0, -1, 0)

Headphone3DOut

head_elev: 0.0
head_azim: 0.0

right_audio
left_audio

Right ACU Ch.

Left ACU Ch.

AmpOut

Figure 35: Sound field reconstruction

For more information, go to "Highway 3D Service" in the Studio Technical User Guide.

162 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

9.1 Audio > Audio Feed
Summary: Inputs audio into the Highway 3D Service and associates the audio with a name
or “cue ID.”

Description: AudioFeed is the first step when using the Highway 3D Service. First audio is
linked to AudioFeed, and the cue ID is created and selected. Then this audio is mixed in a
3D or non-3D way using the other Feeders.

Table 178, "AudioFeed audio inputs" below lists and describes AudioFeed audio input vari-
ables:

Name Type Default
Value

Description

InSignals audio[64] N/A An array of audio inputs. Up to 64 links can connect to
this input. All of the incoming audio is mixed in this
component.

InSignals audio N/A Provides a view of all the mixed audio inputs.

Table 178: AudioFeed audio inputs

Table 179, "AudioFeed control input" below lists and describes the AudioFeed control input
variable:

Name Type Default
Value

Description

Gain float32 1.0 A gain applied to the input audio streams.

Table 179: AudioFeed control input

Table 180, "AudioFeed internal parameter" below lists and describes the AudioFeed internal
parameter variable:

Name Type Default Value Description

Cue ID UNASSIGNED A name given to this audio source. For example,
add and select a Cue called Engine, and route all
engine audio into this AudioFeed.

Note: Generate meaningful names for better read-
ability in the model. Reference this Cue name in a
corresponding Balancer or AuralCuePosn.

Table 180: AudioFeed internal parameter

Copyright © 2025 Advanced Simulation Technology inc. 163

Studio Components Reference Guide (Rev. T, Ver. 0)

9.2 Feeders > AuralCuePosn
Summary: Adds the selected sound cue bus to the sound field at the specified (X, Y, Z) pos-
ition.

Description: In an aircraft model, you might have an AuralCuePosn with a CueID called
“Left Engine” positioned at X= -3.0, Y= 3.0, Z= 0.0. This means that the audio fed into this
CueID with AudioFeedis positioned to the back-left of the reference point.

Once a cue is added to the sound field with this component, add either an AudioIO > Head-
phone3DOut or AudioIO > SpeakerOut to get audio from the sound field.

Table 181, "Feeders > AuralCuePosn control inputs" below lists and describes Feeders >
AuralCuePosn control input variables:

Name Type Default
Value

Description

Gain float32 1.0 Linear gain attached to the Cue.

X float32 0.0 The X coordinate relative to the reference point. Pos-
itive X is in front and negative X is in back of the ref-
erence point.

Y float32 0.0 The Y coordinate relative to the reference point. Pos-
itive Y is left, and negative Y is right of the reference
point.

Z float32 0.0 The Z coordinate relative to the reference point. Pos-
itive Z is above and negative Z is below of the ref-
erence point.

W_Adjust float32 1.0 Focus of the located sound.

Table 181: Feeders > AuralCuePosn control inputs

Table 182, "Feeders > AuralCuePosn internal parameters" below lists and describes Feeders
> AuralCuePosn internal parameters:

Name Type Default Value Description

Cue ID UNASSIGNED Selects the sound cue bus for positioning.

Table 182: Feeders > AuralCuePosn internal parameters

164 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

9.3 Feeders > Balancer1, 4, 8, 16
Summary: Mixes the selected sound cue bus to the selected highways with a set of gains.
Balancer1 mixes to one Highway, Balancer4 to four Highways, etc.

Description: After inputting the audio into the Highway 3D Service using AudioFeed, Bal-
ancers mix the audio to output highways. Balancers provide simple gain mixing to the high-
ways. No 3D calculations are involved. If positioning in 3D is desired, use Feeders >
AuralCuePosn. For example, use Balancer4 to mix a tone to four different highways where
the audio from each highway is routed to an operator’s headset.

Table 183, "Balancer control inputs" below lists and describes Balancer control input vari-
ables:

Name Type Default
Value

Description

Gain float32 1.0 The gain applied to the cue’s audio before it is mixed
to the highways.

Gain1–Gain8 float32 1.0 An additional gain applied when mixing the cue’s
audio to each highway.Gain1 affects mixing on the
first selected highway,Gain2 affects mixing on the
second selected highway, etc.

Table 183: Balancer control inputs

Table 184, "Feeders > Balancer1, 4, 8, 16 internal parameters" below lists and describes Feed-
ers > Balancer1, 4, 8, 16 internal parameter variables:

Name Type Default Value Description

Cue id UNASSIGNED Selects the sound for mixing.

Highways id[8] UNASSIGNED Selects which highways will receive audio. The
number of highways varies based on the Balancer
used (i.e., 1, 4, 8, or 16).

Table 184: Feeders > Balancer1, 4, 8, 16 internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 165

Studio Components Reference Guide (Rev. T, Ver. 0)

9.4 AudioIO > Headphone3DOut
Summary: Headphone3DOut retrieves the sound field from the service and filters it to repro-
duce the 3D environment in a pair of audio outputs for a stereo headset.

Description: Headphone3DOut generates 3D audio in the headphones of an operator. The
operator’s head is located at the sound field reference point (0, 0, 0). The component drives
head azimuth and head elevation from the host based on values from a head tracking system.
These values define the head’s orientation relative to straight forward and cause the sound
field to rotate accordingly.

0

+180

-180

+90

-90

ElevationAzimuth

Table 185, "Headphone3DOut control inputs" below lists and describes Headphone3DOut
control input variables:

Name Type Default
Value

Description

Enable Boolean TRUE Enables and disables 3D filtering. If disabled, the
sound field is mixed in mono to the left and right head-
phone channels.

HeadAzim float32 0.0 The orientation of the head in the horizontal plane. 90
degrees is directly to the left, and -90 degrees is dir-
ectly to the right.

HeadElev float32 0.0 The orientation of the head in the vertical plane, 90
degrees is directly straight up and -90 degrees is dir-
ectly straight down.

Table 185: Headphone3DOut control inputs

166 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 186, "Headphone3DOut audio outputs" below lists and describes Headphone3DOut
audio output variables:

Name Type Default
Value

Description

LeftAudio audio N/A The audio intended for the left ear cup of the head-
phones.

RightAudio audio N/A The audio intended for the right ear cup of the head-
phones.

Table 186: Headphone3DOut audio outputs

9.5 AudioIO > HighwayOut
Summary: Extracts the specified highway’s audio from the Highway 3D Service. AudioOut
typically links directly to a hardware component’s (ACE-RIU, ACU2, etc.) audio out.

Description: To create new highways, double-click SourceHighway, and add new buses in
the service window. For example, add a highway for each speaker or headset. Name the high-
ways based on the corresponding hardware that it is linked to (e.g., “PilotHeadset"). To put
audio onto the highways, use AudioFeed and Balancer. Balancer takes audio from Audi-
oFeed and puts it onto one or more highways.

Table 187, "HighwayOut audio output" below lists and describes the HighwayOut audio out-
put:

Name Type Default Value Description

AudioOut audio N/A The highway’s audio.

Table 187: HighwayOut audio output

Table 188, "HighwayOut control input" below lists and describes the HighwayOut control
input:

Name Type Default
Value

Description

Gain float32 1.0 A gain applied to the audio output.

Table 188: HighwayOut control input

Table 189, "HighwayOut internal parameter" below lists and describes the HighwayOut
internal parameter:

Name Type Default Value Description

SourceHighway ID UNASSIGNED Specifies which highway to extract audio from.

Table 189: HighwayOut internal parameter

Copyright © 2025 Advanced Simulation Technology inc. 167

Studio Components Reference Guide (Rev. T, Ver. 0)

9.6 AudioIO > SpeakerOut
Summary: Retrieves audio from the Highways 3D sound field intended for a speaker at the
specified X, Y, Z position.

Description: SpeakerOut creates a speaker in Highway 3D Service with the specified X, Y,
and Z coordinates relative to the soundfield reference point, extracting the audio from the ser-
vice for the speaker. The X, Y, and Z position should correspond to the speaker’s physical
location. Typically, SpeakerOut links directly to an AmpOut audio out.

For example, if an eight-channel amplifier drives an eight-speaker setup, the model should
contain eight SpeakerOuts linked to eight AmpOuts.

Table 190, "SpeakerOut audio output" below lists and describes SpeakerOut audio output
variable:

Name Type Default
Value

Description

AudioOut audio N/A Audio for this speaker.

Table 190: SpeakerOut audio output

Table 191, "SpeakerOut control inputs" below lists and describes SpeakerOut control input
variables:

Name Type Default
Value

Description

Gain float32 1.0 A gain applied to the audio output.

Position worldposition_
geocentric

(0.0, 0.0, 0.0) The X, Y, and Z position of the speaker relative to
the reference point. The coordinate system is the
same as the one used in AuralCuePosn, where X
is forward, +Y is left, and +Z is up.

Table 191: SpeakerOut control inputs

168 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

10.0 HRTFService
Description: The HRTFService provides 3D capability for headphone audio. Both envir-
onmental and communications audio can be mixed in 3D. Head-related transfer functions
(HRTFs) position audio streams at specified 3D (i.e., azimuth and elevation) positions.

Figure 36, "HRTFService 3D communications configuration" on the next page depicts a 3D
communications configuration for a single operator. The operator has two CommPanels: one
for radios and the other for intercoms. Since both CommPanel components have the same
HRTF bus selected (i.e., Op1), they contribute audio to the same four audio positions. Behind
the scenes, HRTFService mixes audio from CommPanels with the same HRTF bus. Then
HRTFOut4 applies 3D filters according to the specified azimuth and elevation positions.
HRTFOut4's left and right audio outputs connect to an ACENet channel to go to the oper-
ator’s stereo headset. Each additional 3D operator may have a nearly identical configuration
but must use a unique HRTF bus for independent audio and 3D positioning.

Table 192, "HRTFService internal parameter" below lists and describes the HRTFService
internal parameter variables:

Name Type Default
Value

Description

Position worldposition_geo-
centric

(0,0,0) The X, Y, and Z position of the speaker rel-
ative to the reference point. The coordinate
system is the same as the one used in Aur-
alCuePosn (i.e., +X is forward, +Y is to the
left, +Z is up).

Table 192: HRTFService internal parameter

Copyright © 2025 Advanced Simulation Technology inc. 169

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 36, "HRTFService 3D communications configuration" below shows a HRTFService
3D communications configuration:

Op1 Radio

CommPanel8HRTF4

HRTF Bus = Op1

Signal 1 = Radio 1

Signal 2 = Radio 2

Signal 3 = Radio 3

Signal 4 = Radio 4

Pos1 Out Control = 1

Pos2 Out Control = 0

Pos3 Out Control = 8

Pos4 Out Control = 0

Op1 Intercom

CommPanel8HRTF4

HRTF Bus = Op1

Signal 1 = Net IC 1

Signal 2 = Net IC 2

Signal 3 = Net IC 3

Signal 4 = Net IC 4

Pos1 Out Control = 0

Pos2 Out Control = 4

Pos3 Out Control = 8

Pos4 Out Control = 2

Op1_Position1 Audio = Radio1

Op1_Position2 Audio = NetIC3

Op1_Position3 Audio = Radio4 + NetIC4

Op1_Position4 Audio = NetIC2

Op1 3D

HRTFOut4

HRTF Bus = Op1

Pos1 Azim

Pos2 Azim

Pos3 Azim

Pos4 Azim

Pos1 Elev

Pos2 Elev

Pos3 Elev

Pos4 Elev

Left

Right

ACENet Device

i.e. ACU2, ACE-RIU

Pos 1

Radio1

Pos 2

NetIC3

Pos 3

Radio4 + NetIC4

Pos 4

NetIC2

HRTF Service

Figure 36: HRTFService 3D communications configuration

10.1 HRTFOut4
Summary: Outputs a 3D mix of audio for up to four sound positions.

Description: This component receives up to four audio streams from HRTFService, such as
CommPanel8HRTF4. Each stream is positioned at a specific azimuth and elevation in 3D
space relative to the listener. Valid azimuth values range is from -180 to 180 degrees. Valid
elevation range is from -40 to 90 degrees. Head-related transfer function (HRTF) meas-
urements are available in increments of a few degrees. The azimuth and elevation inputs
jumps to the nearest position for which a filter is available. The resulting azimuth and elev-
ation is then shown in Result for each variable.

An azimuth and elevation position of (0,0) corresponds to directly in front of the listener. Pos-
itive azimuths position sounds to the right and negative azimuths position sounds to the left.
An azimuth of 90 corresponds to a position in line with the left ear. An elevation of 90
degrees means straight up.

170 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

The HRTF uses time (i.e., delay) and intensity (i.e., gain) differences to synthesize how a
sound or channel appears to come from a particular point in space. HRTFOut4 Left and
Right audio outputs must directly connect to the ACENet channel(s), since that is the final
output stage before the digital-to-analog (D/A) conversion. For example, if the HRTF is using
an ACU2, HRTFOut4 should directly link to ACU2channel rather than going through a
series of mixers or other components. This ensures that the HRTF timing and gains are main-
tained. Other audio sources (i.e., sidetone, etc.) can be mixed into ACENet as needed, given
ACENet performs implicit mixing at the final output stage.

Table 193, "HRTFOut4 audio inputs" below lists and describes HRTFOut4 audio input vari-
ables:

Name Type Default
Value

Description

OutLeft audio N/A 3D audio output for the left ear.

Caution: OutLeft must be directly connected
to ACENet (i.e., ACU2, ACE-RIU, etc.).

OutRight audio N/A 3D audio output for the right ear.

Caution: OutRight must be directly con-
nected to an ACENet component (e.g.,
ACU2, ACE-RIU.).

Table 193: HRTFOut4 audio inputs

Table 194, "HRTFOut4 control inputs" below lists and describes HRTFOut4 control input
variables:

Name Type Default
Value

Description

Enable Boolean TRUE Turns 3D filtering on for all four audio pos-
itions. If FALSE, the audio outputs are a
mono mix of the four positions.

Pos1Azim–Pos4Azim int32 0 Azimuth in degrees of audio position N (i.e.,
1–4).

Pos1Elev– Pos4Elev int32 0 Elevation in degrees of audio position N (i.e.,
1-4).

Pos1Gain– Pos4Gain float32 1.0 Gain applied to position N (i.e., 1-4) audio
before mixing.

OutGain float32 1.0 Gain applied to the left and right audio out-
puts, affecting all positions.

Table 194: HRTFOut4 control inputs

Copyright © 2025 Advanced Simulation Technology inc. 171

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 195, "HRTFOut4 status variable" below lists and describes the HRTFOut4 status vari-
able:

Name Type Default
Value

Description

Pos1Audio– Pos4Au-
dio

audio N/A Displays each position’s audio stream prior
to 3D mixing.

Table 195: HRTFOut4 status variable

Table 196, "HRTFOut4 internal parameter" below lists and describes the HRTFOut4 internal
parameter variable:

Name Type Default Value Description

HRTFBus id UNASSIGNED Selects HRTFService bus of this component. Com-
ponents sending audio to this component
(e.g.,CommPanel8HRTF4) must have a matching
bus.

Table 196: HRTFOut4 internal parameter

10.2 CommPanel8HRTF4
Summary: Operates the same as the CommPanel8 but outputs audio with the HRTFService
for 3D positioned communications.

Description: CommPanel8HRTF4, much like a standard CommPanel, transmits and
receives on multiple intercoms or radios. The component’s InSignal and SideSignal behavior
is identical to those of the generic CommPanel. However, instead of one OutSignal link, four
output signals are generated and sent to the HRTFService for 3D mixing. The four signals
correspond to four positions in 3D space.

This component should be paired with HRTFOut4, which receives the four output signals
and does the 3D filtering. To establish this connection, the components must have matching
HRTFBus variables. The four PosNOutControl masks determine which intercom buses con-
tribute receive audio to each 3D position. Multiple CommPanel8HRTF4s can share the same
HRTFBus to contribute audio to the same set of four positions.

Table 197, "CommPanel8HRTF4 audio input" below lists and describes the Com-
mPanel8HRTF4 audio input variable:

Name Type Default
Value

Description

InSignal audio N/A Input audio that CommPanel transmits.

Table 197: CommPanel8HRTF4 audio input

172 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 198, "CommPanel8HRTF4 audio output" below lists and describes the Com-
mPanel8HRTF4 audio output variable:

Name Type Default
Value

Description

SideSignal audio N/A Sidetone audio generated by mixing all received
sidetone signals from buses selected in the SideCon-
trol bit mask.

Table 198: CommPanel8HRTF4 audio output

Table 199, "CommPanel8HRTF4 internal parameters" below lists and describes Com-
mPanel8HRTF4 internal parameter variables:

Name Type Default Value Description

HRTFBus id UNASSIGNED Selects HRTFService bus. HRTFOut4 with a
matching bus receives this CommPanel’s four
position audio streams.

Sig1–Sig8 id UNASSIGNED Selects intercom bus handle.

Table 199: CommPanel8HRTF4 internal parameters

Table 200, "CommPanel8HRTF4 control inputs" on the next page lists and describes Com-
mPanel8HRTF4 control input variables:

Name Type Default
Value

Description

InControl byte 255 Bit mask that selects intercom buses to transmit
InSignal. For example, a value of 1 transmits on
Sig1, a value of 2 on Sig2, 4 on Sig3, and 255 on
all buses.

InGain float32 1.0 Scales input audio.

Pos1OutControl–
Pos4OutControl

byte 255 Bit mask that selects which buses contribute their
output signal to position N (i.e., 1-4) output.

Power Boolean TRUE Controls CommPanel's power. If FALSE, no
audio is received or transmitted.

PTT Boolean FALSE Controls CommPanel audio transmission.

SideControl byte 255 Bit mask that selects intercom buses that con-
tributes to SideSignal. For example, a value of 1
receives from Sig1, a value of 2 from Sig2, 4 from
Sig3, and 255 from all buses.

Copyright © 2025 Advanced Simulation Technology inc. 173

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

SideToneGain float32 1.0 Scales sidetone mix just before SideSignal out-
put.

SideGainControl byte 255 Selects which side tones are affected by receive
signal gains. When a bit is high, the intercom
bus's sidetone volume is multiplied by the appro-
priate SigN_RxGain. SideControl value for inter-
com bus becomes logical and of SideControl and
OutControl.

SidetoneLocal byte 255 Selects which side tones are generated locally
versus remotely. If more than one CommPanel
is sharing the same intercom bus, this variable
determines if CommPanel shares the sidetone
with other panels.

Sig1_RxGain–
Sig8_RxGain

float32 1.0 Receive volume for each intercom bus.

Table 200: CommPanel8HRTF4 control inputs

174 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

11.0 IOInterfaces
The following section details the IOInterfaces components and the objects within them. The
IOInterfaces components include:

l ACE_RIU_channel

l ACE_RIU_SerialByteOut

l ACUchannel

l ACU2channel

l ACU2_SerialByteOut

l AmpOut

l RTPStream

l SerialPort_IO

l VoisusChannel

11.1 ACE_RIU_channel
Summary: The ACE-RIU device provides remote digital-to-analog audio and I/O distribution
between Telestra servers and audio peripherals. The ACE_RIU_channel component assigns
audio inputs and outputs for models.

Description: The ACE_RIU_channel component connects the software model audio to one
specified channel on the ACE-RIU device. It also handles the digital in and out from the
device channel. Up to 32 audio streams can be mixed together and linked to the ACE-RIU
channel output. The component accepts a single audio in source. The audio gain is adjusted
through the audio in and out gains. The overall channel volume is adjusted through the
volume input.

Two serial devices can be connected to one ACE-RIU device. The serial devices are asso-
ciated with ACE-RIU channels A and C. When connecting to a state machine device such as
an handheld terminal (HHT) or SINCGARS panel, only use channels A and C.

Table 201, "ACE_RIU_channel audio input" below lists and describes the ACE_RIU_chan-
nel audio input variable:

Name Type Default
Value

Description

AudioOuts audio[32] N/A Mixes up to 32 audio streams before it is routed out
of the ACE-RIU device as an analog signal.

Table 201: ACE_RIU_channel audio input

Copyright © 2025 Advanced Simulation Technology inc. 175

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 202, "ACE_RIU_channel audio output" below lists and describes the ACE_RIU_chan-
nel audio output variable:

Name Type Default
Value

Description

AudioIn audio N/A Audio routed in from the ACE-RIU device and sent to
other components in the model.

Table 202: ACE_RIU_channel audio output

Table 203, "ACE_RIU_channel control input" below lists and describes the ACE_RIU_chan-
nel control input variable:

Name Type Default
Value

Description

DigitalIn uint8 0 Allows the ACE_RIU_channel to drive a digital
input to the software. Each channel has one digital
input.

Table 203: ACE_RIU_channel control input

Table 204, "ACE_RIU_channel control outputs" below lists and describes ACE_RIU_chan-
nel control output variables:

Name Type Default
Value

Description

AudioOutGain float32 1.0 Provides the audio output's gain control.

AudioInGain float32 1.0 Provides the audio input's gain control.

DigitalOut Boolean FALSE Allows the software to drive a digital output on the
ACE-RIU. Each ACE-RIU channel has one digital
output.

Volume float32 1.0 Sets the ACE-RIU channel's main volume.

Table 204: ACE_RIU_channel control outputs

Table 205, "ACE_RIU_channel internal parameters" on the facing page lists and describes
ACE_RIU_channel internal parameter variables:

Name Type Default
Value

Description

Channel riu_channel None Selects the ACE-RIU channel.

Identifier device_id <Select> Selects the name of the ACE-RIU device.

176 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

StateMachine Defines variables related to a state machine device
associated with the specified ACE-RIU channel
such as an HHT or SINCGARS panel. State
machine devices can only connect to channels A
and C.

Important: This variable is unavailable in Red Hat
Enterprise Linux (RHEL) 7 and later.

Name string <Edit> Identifies state machine instance in the ini-
tialization (i.e., .ini) file.

Important: This variable is unavailable in Red Hat
Enterprise Linux (RHEL) 7 and later.

EntityName string <Edit> Identifies the state machine .ini file.

Important: This variable is unavailable in Red Hat
Enterprise Linux (RHEL) 7 and later.

Type sme_type NONE Type of state machine device.

Important: This variable is unavailable in Red Hat
Enterprise Linux (RHEL) 7 and later.

Table 205: ACE_RIU_channel internal parameters

11.2 ACE_RIU_SerialByteOut
Summary: This component transmits up to eight bytes of data from an ACE-RIU ACENet
device using the serial port interface.

Description: This device transmits a range of bytes (i.e., 0–8) from the ACENet device's
serial port interface. The bytes transmit when MsgSize updates and is not 0. The bytes also
transmit when the Char numbers update and the updated Char number is in the range of
bytes transmitted, as specified by MsgSize.

Copyright © 2025 Advanced Simulation Technology inc. 177

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 206, "ACE_RIU_SerialByteOut control inputs" below lists and describes ACE_RIU_
SerialByteOut control input variables:

Name Type Default
Value

Description

MsgSize uint32 0 Specifies the number of bytes that the CharsOut
array transmits. The range for this variable is [0,8].
When this control changes, the corresponding
number of bytes transmit in order.
l Modifier: add (+)
l Modifier_default: 0

CharsOut uint8 0 An array of eight bytes (uint8). The resulting bytes
in this array transmit in order from Char0 to the
number specified inMsgSize. IfMsgSize is 0, no
bytes are transmitted. IfMsgSize is not 0 and a
byte updates in the range [Char1, Char{MsgSize}],
the whole range transmits.
l Modifier: add (+)
l Modifier_default: 0

Table 206: ACE_RIU_SerialByteOut control inputs

Table 207, "ACE_RIU_SerialByteOut internal parameters" below lists and describes ACE_
RIU_SerialByteOut internal parameter variables:

Name Type Default
Value

Description

Identifier device_id <Select> The name of the ACE-RIU.

Channel riu_channel A Select the ACUchannel to transmit serial data.
Serial Port A requires channel A; Serial Port B
requires channel C.

BaudRate serial_baud_
rate

Baudrate_
4800

Select the serial data's baud rate.

Table 207: ACE_RIU_SerialByteOut internal parameters

178 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

11.3 ACUchannel
Summary: The software-configurable component for the ACU hardware device.

Description: The ACUchannel connects the software model audio to a channel of the phys-
ical ACU device. The control outputs provide the press-to-talk (PTT) channel selection for
Channels 0–3. Adjust audio gain with the AudioOuts and AudioIn gains. The volume controls
the overall channel’s volume.

Table 208, "ACUchannel audio input" below lists and describes the ACUchannel audio input
variable:

Name Type Default Value Description

AudioOuts audio[32] N/A Mixes up to 32 audio streams before routing out of
the ACU device as an analog signal.

Table 208: ACUchannel audio input

Table 209, "ACUchannel audio output" below lists and describes the ACUchannel audio out-
put variable:

Name Type Default
Value

Description

AudioIn audio N/A Audio routed in from the ACU device on the specified
channel that becomes available to other components
in the model.

Table 209: ACUchannel audio output

Table 210, "ACUchannel control inputs" below lists and describes ACUchannel control input
variables:

Name Type Default
Value

Description

AudioInGain float32 1.0 Provides AudioIn's gain control.

AudioOutGain float32 1.0 Provides AudioOut's gain control.

DigitalOut Boolean FALSE The ACU digital output allows the software to drive
a digital output for ACUchannel. One digital output
exists per channel.

Volume float32 1.0 Sets the ACUchannel'smain volume.

Table 210: ACUchannel control inputs

Table 211, "ACUchannel control outputs" on the next page lists and describes ACUchannel
control output variables:

Copyright © 2025 Advanced Simulation Technology inc. 179

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

PTT Boolean FALSE When TRUE, PTT is on for transmission.

PTTselect uint8 255 Digital in for PTT. Ranges 1–255.

PTT1 Boolean FALSE When TRUE, the PTT is on for transmission.

PTT1select uint8 255 Digital in for the PTT. Ranges 1–255

PTT2 Boolean FALSE When TRUE, the PTT is on for transmission.

PTT2select uint8 255 Digital in for the PTT. Ranges 1–255

PTT3 Boolean FALSE When TRUE, the PTT is on for transmission.

PTT3select uint8 255 Digital in for the PTT. Ranges 1–255

DigitalIn1 uint8 0 Allows the ACU to drive a digital input to the soft-
ware and allows direct connection of PTT. Each
ACU has three digital inputs per channel.

DigitalIn2 uint8 0 Allows the ACU to drive a digital input to the soft-
ware and allows direct connection of PTT. Each
ACU has three digital inputs per channel.DigitalIn3 uint8 0

Table 211: ACUchannel control outputs

180 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 212, "ACUchannel internal parameters" below lists and describes ACUchannel
internal parameter variables:

Name Type Default
Value

Description

Channel acenet_chan-
nel

None Selects the ACUchannel.

Identifier device_id <Select> Selects the name of the ACU device.

StateMachine N/A N/A Defines variables related to a state machine
device associated with the specified ACUchannel,
such as a handheld terminal (HHT) or SINCGARS
panel. State machine devices can only connect to
channels A and C.

Important: This variable is unavailable in Red Hat
Enterprise Linux (RHEL) 7 and later.

Name string <Edit> Identifies state machine instance in the ini-
tialization (.ini) file.

Important: This variable is unavailable in Red Hat
Enterprise Linux (RHEL) 7 and later.

EntityName string <Edit> Identifies state machine .ini file.

Important: This variable is unavailable in Red Hat
Enterprise Linux (RHEL) 7 and later.

Type string None Type of state machine device.

Important: This variable is unavailable in Red Hat
Enterprise Linux (RHEL) 7 and later.

Table 212: ACUchannel internal parameters

11.4 ACU2channel
Summary: The software-configurable component for the ACU2 hardware device.

Description: The ACU2channel connects the software model audio to a channel of the phys-
ical ACU2 device. The control outputs provide the press-to-talk (PTT) channel selection for
channels 0–3. Adjust audio gain with the AudioOut and AudioIn gains. The volume controls
the overall channel’s volume. The ACU2 has four stereo audio outputs and four mono audio
inputs that support multiple mono or stereo operators and audio equipment.

Copyright © 2025 Advanced Simulation Technology inc. 181

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 213, "ACU2channel audio inputs" below lists and describes ACU2channel audio input
variables:

Name Type Default
Value

Description

AudioOuts audio[32] N/A Mono audio output of the ACU2channel. Mixes
up to 32 audio streams.

AudioOutsLeft audio[32] N/A Audio that routes out the left stereo channel.
This audio is mixes with the AudioOut audio
streams. Mixes up to 32 audio streams.

AudioOutsRight audio[32] N/A Audio that is routed out the right stereo channel.
This audio also mixes with the AudioOut audio
streams. Mixes up to 32 audio streams.

Table 213: ACU2channel audio inputs

Table 214, "ACU2channel audio output" below lists and describes the ACU2channel audio
output variable:

Name Type Default
Value

Description

AudioIn audio N/A Audio routed in from the ACU2 device on the
specified channel that becomes available to
other components in the model.

Table 214: ACU2channel audio output

Table 215, "ACU2channel control inputs" below lists and describes ACU2channel control
input variables:

Name Type Default
Value

Description

AudioOutGain float32 1.0 The AudioOutGain gain control.

AudioOutGainL float32 1.0 The gain control for the AudioOutsLeft audio out-
put.

AudioOutGainR float32 1.0 The gain control for the AudioOutsRight audio
output.

AudioInGain float32 1.0 The AudioIn gain control.

DigitalOut Boolean FALSE The ACU2 digital output allows the software to
drive a digital output for the ACU2channel.
There is one digital output per channel.

Volume float32 1.0 Sets the main volume of the ACU2 outputs.

Table 215: ACU2channel control inputs

182 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 216, "ACU2channel control outputs" below lists and describes ACU2channel control
output variables:

Name Type Default
Value

Description

AnalogIn1 uint8 0 Corresponds to DigitalIn1with a range of 1–255.
Digital in for PTT. Used for four-channel selector
PTT.

AnalogIn2 uint8 0 Corresponds to DigitalIn2with a range of 1–255.
Used for four-channel selector PTT.

AnalogIn3 uint8 0 Corresponds to DigitalIn3with a range of 1–255.
Digital in for the PTT. Used for four-channel
selector PTT.

DigitalIn1–Digit-
alIn3

Boolean FALSE Allows the ACU2 to drive a digital input to the
software and allows direct connection of PTT.
Each ACU2 has three digital inputs per channel.

PTT Boolean FALSE When TRUE, PTT is on for transmission.

PTTselect uint8 255 Digital in for PTT; matches the CommPanel
InControl/OutControl variables. Valid values are
0, 1, 2, 4, and 8.

Table 216: ACU2channel control outputs

Table 217, "ACU2channel internal parameters" on the next page lists and describes
ACU2channel internal parameter variables:

Name Type Default
Value

Description

Channel acu2_channel None Select the ACU2 channel A–D.

Identifier device_id <Select> Select the name of the ACU2 device.

StateMachine N/A N/A Defines variables related to a state machine
device associated with the specified ACU2chan-
nel, such as an HHT or SINCGARS panel. State
machine devices can only connect to channels A
and C.

Important: This variable is unavailable in Red
Hat Enterprise Linux (RHEL) 7 and later.

Copyright © 2025 Advanced Simulation Technology inc. 183

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Name string <Edit> Identifies state machine instance in the ini-
tialization (.ini) file.

Important: This variable is unavailable in Red
Hat Enterprise Linux (RHEL) 7 and later.

EntityName string <Edit> Identifies state machine initialization file.

Important: This variable is unavailable in Red
Hat Enterprise Linux (RHEL) 7 and later.

Type Type NONE Type of state machine device.

Important: This variable is unavailable in Red
Hat Enterprise Linux (RHEL) 7 and later.

Table 217: ACU2channel internal parameters

11.5 ACU2_SerialByteOut
Summary: This component transmits up to eight bytes of data from an ACU2 ACENet
device using the serial port interface.

Description: This device transmits a range of bytes (i.e., 0–8) from the ACENet device's
serial port interface. The bytes transmit whenever MsgSize updates and is not 0. The bytes
also transmit whenever Char numbers are updated and as long as the updated Char number is
in the range of bytes transmitted, as specified by MsgSize.

184 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 218, "ACU2_SerialByteOut control inputs" below lists and describes ACU2_Seri-
alByteOut control input variables:

Name Type Default
Value

Description

MsgSize uint32 0 Specifies the number of bytes that transmit from
CharsOut. The range for this variable is [0,8]. When
this variable changes, the corresponding number of
bytes transmit in order.
l Modifier: add (+)
l Modifier_default: 0

CharsOut uint8 0 An array of eight bytes (i.e., uint8). The resulting
bytes in this array transmit in order from Char1 to the
number specified inMsgSize. IfMsgSize is 0, no
bytes transmit. IfMsgSizeis not 0 and a byte is
updated in the range [Char1, Char<MsgSize>], the
whole range transmits.
l Modifier: add (+)
l Modifier_default: 0

Table 218: ACU2_SerialByteOut control inputs

Table 219, "ACU2_SerialByteOut internal parameters" below lists and describes ACU2_Seri-
alByteOut internal parameter variables:

Name Type Default
Value

Description

Identifier device_id <Select> The name of the ACU2 goes here.

Channel acu2_chan-
nel

A Choose an ACU2 channel to transmit serial data.
Serial Port A requires Channel A, while Serial Port B
requires Channel C.

BaudRate serial_baud_
rate

baudrate_
4800

Choose the baud rate of the serial data.

SerialSigType serial_sig-
nal_type

RS422 Choose the serial signal type.

Table 219: ACU2_SerialByteOut internal parameters

11.6 AmpOut
Summary: The software-configurable component for the amplifier hardware devices.

Description: AmpOut drives up to 32 audio streams from within the model to a specified
channel of the amplifier.

Copyright © 2025 Advanced Simulation Technology inc. 185

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 220, "AmpOut audio input" below lists and describes the AmpOut audio input vari-
able:

Name Type Default
Value

Description

AudioOuts audio[32] N/A Mixes up to 32 audio streams before routing out of
the amplifier channel.

Table 220: AmpOut audio input

Table 221, "AmpOut control inputs" below lists and describes AmpOut control input vari-
ables:

Name Type Default
Value

Description

AudioOutGain float32 1.0 Provides the audio output's overall gain control.

LimiterEnable Boolean TRUE Turns LIMITER on or off. If TRUE, AmpOut's
peak output levels do not exceed Lim-
iterThreshold.

LimiterRelease float32 100.0 The rate in dB/sec that determines how fast
LIMITER responds to a signal-level drop. Higher
releases cause a faster gain increase, ensuring
quiet signals do not get quieter.

LimiterThreshold float32 0.0 The maximum peak level in dB allowed in the out-
put signal. A value of -12 corresponds to 0.25 lin-
ear or 1/4 a full-scale signal.

Volume float32 1.0 Sets the amplifier's normal volume.

Table 221: AmpOut control inputs

Table 222, "AmpOut internal parameters" below lists and describes AmpOut internal para-
meter variables:

Name Type Default
Value

Description

Channel acenet_chan-
nel

None Selects the amplifier channel.

Identifier device_id <Select> Select the amplifier's name.

Table 222: AmpOut internal parameters

186 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

11.7 RTPStream
Summary: The RTPStream component sends and receives audio over the network using
Real-time Transport Protocol (RTP).

Description: To set up an RTPStream, complete the following steps:

1. Define RTP streams in an RTP Stream Map (.rtp) file, as described in Section 11.7.1,
"Add an RTP Stream Map" on page 189.

2. Link the new RTP Stream Map to a Telestra server, as described in Section 11.7.2,
"Assign the RTP Stream Map to a Telestra server" on page 191.

3. Configure RTPStream variables using the variable descriptions below.

Table 223, "RTPStream audio inputs and outputs" below lists and describes RTPStream
audio inputs and outputs:

Name Type Default Value Description

Audio Input

TxAudio audio N/A The RTPStream's audio source.

Audio Output

RxAudio audio N/A The received network RTP audio.

Table 223: RTPStream audio inputs and outputs

Table 224, "RTPStream control inputs" below lists and describes RTPStream control inputs:

Name Type Default
Value

Description

NameIn string N/A Determines which stream configuration to use in the
RTP Stream Map. This input overrides the Name
internal parameter variable.

TxEnabled boolean FALSE When TRUE, RTPStream streams audio. If the input
audio signal is inactive or no signal is connected,
RTPStream sends packets of silent audio.

When FALSE, RTPStream does not stream audio.

Table 224: RTPStream control inputs

Copyright © 2025 Advanced Simulation Technology inc. 187

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 225, "RTPStream internal parameters" below lists and describes RTPStream internal
parameters:

Name Type Default
Value

Description

Name string N/A Determines which stream configuration to use in
the RTP Stream Map.

PacketLength packet_
length

_20_ms Sets the audio length to send per packet.

PayloadFormat payload_
format

Mu_Law_8k Sets the payload's audio-encoding format.

Table 225: RTPStream internal parameters

In RTP, the payload type is a 7-bit number that represents the type of encoding that the
stream uses. Table 226, "RTPStream payload formats" below lists and describes RTPStream
payload formats:

Payload Format Type Description

Mu_Law_8k 0 8-bit, 8 kHz μ-law algorithm

A_Law_8k 8 8-bit, 8 kHz A-law algorithm

A_Law_16k 92 8-bit, 16 kHz A-law algorithm

PCM_16_16k 93 16-bit, 16 kHz PCM

Float_48k 94 32-bit, 48 kHz floating point

PCM_16_48k 95 16-bit, 48 kHz PCM

Table 226: RTPStream payload formats

Table 227, "RTPStream packet lengths" below describes the length of the audio sample
RTPStream sends in a single packet:

Packet Length Description

_4_ms The packet contains 4 ms of audio.

_8_ms The packet contains 8 ms of audio.

_12_ms The packet contains 12 ms of audio.

_16_ms The packet contains 16 ms of audio.

_20_ms The packet contains 20 ms of audio.

_25_ms The packet contains 25 ms of audio.

Table 227: RTPStream packet lengths

188 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

11.7.1 Add an RTP Stream Map

An RTP Stream Map is a configuration file that defines RTP streams and their cor-
responding parameters (i.e., the destination IP address, local port numbers, and remote port
numbers). To add an RTP Stream Map file and define RTP streams, follow these steps:

1. From the left menu, go to servers.

Figure 37: servers navigation

2. Right-click the servers canvas, and select Add.

3. Select the New Item drop-down list, choose RTP Stream Map, and enter a unique
name.

4. Select .

5. Under servers, select the new .rtp file, and then select .

Figure 38: Edit RTP Stream Map .rtp file

Copyright © 2025 Advanced Simulation Technology inc. 189

Studio Components Reference Guide (Rev. T, Ver. 0)

6. In the text editor, enter the following parameters for each stream:

l [StreamName]: where StreamName is the name of the stream defined in brackets
(e.g., [stream1], [stream2]). RTPStream uses this name to choose a configuration.
Stream names must follow initialization (.ini) file format.

l ipv4: in IP Address, enter xxx.xxx.xxx.xxx, where xxx.xxx.xxx.xxx is the IPv4 address
or hostname of a remote RTP endpoint. In a typical configuration, this RTP end-
point serves as the destination for outgoing streams and the source for incoming
streams.

l local_port: the port that RTPStream uses to listen for incoming streams.

l remote_port: the port that the remote RTP endpoint uses to listen for incoming
streams and send outgoing streams.

An RTP Stream Map .rtp file might resemble the following:

[stream1]
ipv4=192.168.1.100
local_port=16384
remote_port=16386

[stream2]
ipv4=192.168.1.200
local_port=16386
remote_port=16384

7. Select .

190 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

11.7.2 Assign the RTP Stream Map to a Telestra server

To assign the RTP Stream Map to a Telestra server, follow these steps:

1. From the left menu, choose a layout (e.g., main).

Figure 39: Layout navigation

2. In Icon View, right-click a Telestra server (), and choose Edit.

3. In Telestra Editor, go to SIM SERVER.

4. Select RTP Plan, and choose the RTP Stream Map you created in Section 11.7.1,
"Add an RTP Stream Map" on page 189.

Figure 40: Assign the RTP Stream Map to RTP Plan

5. Select .

6. From the toolbar, select Project > Save.

Copyright © 2025 Advanced Simulation Technology inc. 191

Studio Components Reference Guide (Rev. T, Ver. 0)

7. From the toolbar, select Install Layout ().

Figure 41: Install Layout

11.8 SerialPort
Summary: This component is an internal ASTi component that debugs ACE-RIU channels.

11.9 VoisusChannel
Summary: VoisusChannel provides the audio communication and radio control for a remote
client.

Important: This feature is unavailable in Red Hat Enterprise Linux (RHEL) 7 and later.

Description: VoisusChannel works with CommPanels and multiple radio components to
provide remote radio control. Use VoisusChannel to provide press-to-talk (PTT), output,
radio net selection, and volume controls for the remote client. This component accepts
receive and transmit states and commplan configuration for the remote client radios. Several
settings per radio (i.e., 1–16) define how the remote operator controls the radio.

192 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 228, "VoisusChannel audio inputs" below lists and describes VoisusChannel audio
input variables:

Name Type Default
Value

Description

AudioOut audio N/A Audio sent to the remote client.

Sidetone audio N/A Audio sent to the remote client as the sidetone signal.

Table 228: VoisusChannel audio inputs

Table 229, "VoisusChannel audio output" below lists and describes the VoisusChannel audio
output variable:

Name Type Default
Value

Description

AudioIn audio N/A Audio routed from the remote client on the specified
channel.

Table 229: VoisusChannel audio output

Table 230, "VoisusChannel control inputs" below lists and describes VoisusChannel control
input variables:

Name Type Default
Value

Description

Fill string N/A Identifies the Comm Plan fill from the connected
radio (e.g., one input per radio, Radio 1–16).

NetIn uint32 0 The current net selection of the specified radio (e.g.,
one input per radio, Radio 1–16).

Receiving Boolean FALSE When TRUE, the specified radio actively receives
(e.g., one input per radio, Radio 1–16).

Transmitting Boolean FALSE When TRUE, the specified radio actively transmits
(e.g., one input per radio, Radio 1–16).

Table 230: VoisusChannel control inputs

Copyright © 2025 Advanced Simulation Technology inc. 193

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 231, "VoisusChannel control outputs" below lists and describes VoisusChannel control
output variables:

Name Type Default
Value

Description

PTT Boolean FALSE When TRUE, audio actively transmits.

InControlA uint8 0 Selects the radios (i.e., 1–8) in the CommPanel to
transmit on (i.e., bit mask).

InControlB uint8 0 Selects the radios (i.e., 9–16) in the CommPanel to
transmit on (bit mask).

NetOut int32 0 Net selection from the remote client (e.g., one output
per radio, Radio 1–16).

OutControlA uint8 0 Selects the radios (i.e., 1–8) to receive from the bit
mask.

OutControlB uint8 0 Selects the radios (9–16) to receive from the bit
mask.

Volume float32 0.0 Sets the radio receive gain (e.g., one output per
radio, Radio 1–16).

Table 231: VoisusChannel control outputs

Table 232, "VoisusChannel internal parameters" below lists and describes VoisusChannel
internal parameter variables:

Name Type Default
Value

Description

DefaultNet uint8 0 The initial net that the radio tunes to after an install-
ation (e.g., one parameter per radio, radios 1–16).

DefaultRxState uint8 0 The initial receive/transmit settings after an install
(e.g., one parameter per radio, radios 1–16).

DeviceName string <Edit> The name given to the operator instance in the
model.

NetLock Boolean FALSE Controls whether the remote client can change the
default net selection (e.g., one parameter per radio,
Radio 1–16)

NumRadios uint8 0 Number of attached radios that the remote client
controls.

RxLock Boolean FALSE Controls whether the remote client can change the
default receive state (e.g., one parameter per radio,
Radio 1–16).

Table 232: VoisusChannel internal parameters

194 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

12.0 Intercom
The Intercom components provide an audio bus service to which other components can con-
nect, distributing audio throughout a model. Additionally, the intercom service and com-
ponents can simulate the intercom bus structures of real aircraft and other training
applications. This section provides details on the following intercom components:

l IcomRx

l IcomTx

l Intercom_Bus_Power

This section also describes the IntercomBusService.

12.1 IcomBalancer8
Summary: Aural cue applications with multiple speakers that distribute the same sound can
use IcomBalancer8 to individually set each speaker's volume.

Description: IcomBalancer8 places a single audio signal on multiple intercom channels. To
adjust the aural cue's apparent location relative to its speaker position, set the individual gain
of each intercom bus. Each component can route an audio signal to eight or fewer intercom
buses.

Note: To route audio from the intercom buses to the speakers, use the IcomRx component.
To learn more about IcomRx, go to Section 12.2, "IcomRx" on the next page.

Table 233, "IcomBalancer8 audio input" below lists and describes the IcomBalancer8 audio
input:

Name Type Default
Value

Description

InSignals audio N/A An input mixer with 32 inputs; connects to one or
more audio signal(s) that you will distribute to the spe-
cified intercom buses.

Table 233: IcomBalancer8 audio input

Copyright © 2025 Advanced Simulation Technology inc. 195

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 234, "IcomBalancer8 control inputs" below lists and describes IcomBalancer8 control
inputs:

Name Type Default
Value

Description

InGain basic/float32 N/A A gain applied to the sum of the InSignals.

Gain1–Gain8 basic/float32 0 Multipliers to the assignedOutBus audio bus signals.
IcomBalancer8multiplies each audio buses signal
amplitude by its corresponding gain value before
transmitting it to the audio bus.

Table 234: IcomBalancer8 control inputs

Table 235, "IcomBalancer8 internal parameters" below lists and describes IcomBalancer8
internal parameter variables:

Name Type Default
Value

Description

InSignalResult audio N/A The audio signal that IcomBalancer8 will distribute
to the specified intercom buses; displays the InSig-
nals result with InGain applied.

OutBus1–
OutBus8

id N/A Selects the intercom bus handle.

Table 235: IcomBalancer8 internal parameters

12.2 IcomRx
Summary: Intercom Receiver (IcomRx) provides a connection from an intercom bus within
the model. The purpose of this component is to provide a simplified means of retrieving
audio from an intercom bus without using a CommPanel. This capability is useful for mon-
itoring audio on a particular intercom bus within the model. IcomRx cannot transmit audio to
an intercom bus.

This component also provides the bus with a power state. If there is not an intercom object
included for a particular bus, then the bus is fully operational by default.

Description: IcomRx provides power conditions a specific bus and a direct output tap of the
bus composite audio.

This component maps to the same connection required for a radio object. These two service-
side connections have values of 1.0 when the intercom object power is TRUE and 0.0 when
the power is FALSE. Basically, the intercom bus is off if the power is off.

The intercom bus parameter defines which bus the audio is pulled from. This parameter maps
to the handle of the intercom bus.

196 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

The IcomRx output is the audio that comes from the intercom bus. OutGain controls the amp-
litude of the output signal. If this variable is 0.0, IcomRx does not output a signal.

Table 236, "IcomRx audio output" below lists and describes the IcomRx audio output vari-
able:

Name Type Default
Value

Description

OutSignal audio N/A Outputs audio from the selected intercom bus.

Table 236: IcomRx audio output

Table 237, "IcomRx control input" below lists and describes the IcomRx control input vari-
able:

Name Type Default
Value

Description

OutGain float32 1.0 OutGain applies gain control to the signal that is
retrieved from the intercom bus.
l Modifier: multiply (*)
l Modifier_default: 1.0

Table 237: IcomRx control input

Table 238, "IcomRx internal parameter" below lists and describes IcomRx inputs, outputs,
and internal parameters:

Name Type Default Value Description

Channel id UNASSIGNED Channel selects the intercom bus identifier.

Table 238: IcomRx internal parameter

12.3 IcomTx
Summary: Intercom Transmitter (IcomTx) connects to an intercom bus within the model.
This component provides a simple means of placing audio on an intercom bus without a Com-
mPanel. This capability is useful for distributing audio from a single source that should be
heard through multiple comm panels in the model. The source audio for transmission comes
from an external signal connection into IcomTx. This component cannot retrieve audio from
an intercom bus.

Copyright © 2025 Advanced Simulation Technology inc. 197

Studio Components Reference Guide (Rev. T, Ver. 0)

Description: IcomTx provides power conditioning of a specific bus and an input for an aux-
iliary signal to be placed onto the bus. Only one intercom object may connect to any indi-
vidual intercom bus within the intercom service. Any other configuration is invalid. IcomTx
maps exactly to the same connections required for a radio transmitter object. The parameter
intercom bus determines onto which bus the audio is injected. This parameter maps to the
handle input to the intercom service. Since IcomTx cannot retrieve audio from a bus, no out-
put signal is required.

Table 239, "IcomTx audio input" below lists and describes the IcomTx audio input variable:

Name Type Default
Value

Description

InSignal audio N/A Connects a signal into the selected intercom bus for
transmission.

Table 239: IcomTx audio input

Table 240, "IcomTx control input" below describes the IcomTx control input:

Name Type Default
Value

Description

InGain float32 1.0 Applies gain control to InSignal before it transmits on
the intercom bus.

Table 240: IcomTx control input

Table 241, "IcomTx internal parameter" below describes the IcomTx internal parameter:

Name Type Default Value Description

Channel id UNASSIGNED Channel selects the intercom bus identifier.

Table 241: IcomTx internal parameter

12.4 Intercom_Bus_Power
Summary: Provides power for IcomRx and IcomTx to play audio over an intercom bus.

Description: Intercom_Bus_Power selects an intercom bus to control power. Power toggles
Intercom_Bus_Power. IntercomBus is turned on by default.

198 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 242, "Intercom_Bus_Power audio input" below describes the Intercom_Bus_Power
audio input variable:

Name Type Default
Value

Description

Power Boolean FALSE Toggles the intercom bus power.
l Modifier: XOR
l Modifier_default: TRUE

Table 242: Intercom_Bus_Power audio input

Table 243, "Intercom_Bus_Power internal parameter" below describes Intercom_Bus_Power
internal parameter:

Name Type Default Value Description

IntercomBus id UNASSIGNED Selects the intercom bus to toggle power.

Table 243: Intercom_Bus_Power internal parameter

12.5 IntercomBusService
Summary: IntercomBusService provides an invisible audio connection between objects that
are attached to a common intercom channel. All connectivity between a specific operator's
CommPanel and the source and source/sink objects is carried out via intercom service links.
The service supports multiple simultaneous channels that operate in isolation from any others.
Inputs to a particular channel mix. Outputs from a channel are common to all destination
objects, with one exception related to the operation of sidetone. Sidetone is the return signal
from an object that has transmit and receive capabilities, such as a radio. Go to the descrip-
tion below for a full definition of the sidetone characteristic. Both half and full duplex con-
nectivity between objects is supported depending on the source/sink object type.

Note: As with all service-type components, you do not manually create the service object;
the loader automatically creates the service object when it detects that a component has an
intercom service port connection. Only one service component of the appropriate type loads
based on the first found need for a service of this type.

Description: IntercomBusService provides an N channelized audio mixer and distribution
service. IntercomBusService provides a centralized point for the generation of sidetone sig-
nal return to source objects. The majority of voice systems receive a portion of the source sig-
nal as a return, ensuring that the system is functional. The sidetone must generate cleanly
since there are many potential issues related to multiple signal returns to an operator. When
you should hear sidetone, the receive signal should not contain the same source. A return path
must provide a local loop for the sidetone to ensure that the source signal subtracts from the
receive signal. This action must also accommodate any processing delays within the signal
paths.

Copyright © 2025 Advanced Simulation Technology inc. 199

Studio Components Reference Guide (Rev. T, Ver. 0)

This service also includes some intelligence, allowing it to condition the return of sidetone
based on state data returned from a connected object, specifically when used to link an oper-
ator to a radio or network intercom object. The radio object must provide a sidetone state
return that conditions whether any sidetone returns to any operators on the channel.

IntercomBusService touches many other components throughout a model. As a result, define
the nature of the service-edge primitive. These primitives provide the component interface to
and from the IntercomBusService. This interface passes the input audio to the service,
receives the return audio from the service, and passes additional data into the service. The ser-
vice includes the channel index set by the model developer Channel Handle, sidetone gain,
audio activity status, and component type. The component type determines whether the
sidetone gain acts as a local loop gain or gate value for local radios or the net intercom. The
Channel Handle is the only user-defined input to this primitive. No other inputs or settings
are required.

Within the tool, a handle (i.e., bus name) is defined, and the tool assigns an internal index
number to the channel. By default, the tool assigns the channel numbers incrementally. Intern-
ally, IntercomBusService uses the channel number to link inputs and outputs. Channel num-
bers do not display. All displays related to the handles must be in alphabetic order to help you
find required handles for assignment.

Intercom also supports diagnostic facilities, allowing you to view intercom channels in the
model. This function scans the model for all objects using the service and extracts the inform-
ation into a table-like view.

The Assigned Buses view displays all components connected to each handle:

Component Name Var Bus

/Intercom_Intercom_Bus_
Power

IntercomBus bus_number1

/Intercom_IcomRx1 Channel bus_number1

/Intercom_IcomRx1 IcBus.channel_Id bus_number1

/Intercom_IcomTx1 Channel bus_number1

/Intercom_IcomTx1 IcBus.channel_Id bus_number1

/Intercom_IcomRx2 Channel bus_number2

/Intercom_IcomRx2 IcBus.channel_Id bus_number2

/Intercom_IcomTx2 Channel bus_number2

/Intercom_IcomTx2 IcBus.channel_Id bus_number2

Table 244: Components connected to Assigned Buses

200 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

13.0 Platform
The following section details Platform and the objects within them. Platform components
include the following:

l Detonation

l Entity

l Fire

l GeocentricWorldPosition

l GeodeticWorldPosition

l RelativePosition

13.1 Detonation
Summary: Detonation looks at Detonation protocol data units (PDUs) on the Distributed
Interactive Simulation (DIS) network and outputs their values for use within the model.

Description: This component is used primarily for triggering sounds and events based on
incoming Detonation PDUs from the DIS network. Detonation presents relevant variables
needed to determine the sound, while it ignores other parts of the PDU. It holds all values
until it detects another Detonation PDU. Serial increments with every Detonation PDU
detected on the network. The PDU Type must equal 3 for Detonation to present values. All
nomenclature is based on the DIS standard for Detonation PDUs.

Table 245, "Detonation control outputs" below lists and describes Detonation control output
variables:

Name Type Default
Value

Description

Serial uint32 0 Increments with each incoming Detonation PDU,
such as Type 3 DIS PDUs. All other values in Det-
onation update with the Serial value based on the
incoming packet.

LocationX, Loca-
tionY, LocationZ

float32 0.0 The geocentric location in meters.

VelocityX, Velo-
cityY, VelocityZ

float32 0.0 The geocentric velocity in meters per second.

Table 245: Detonation control outputs

Copyright © 2025 Advanced Simulation Technology inc. 201

Studio Components Reference Guide (Rev. T, Ver. 0)

13.2 Entity
Summary: Entity creates a fully Distributed Interactive Simulation (DIS)-compliant entity
protocol data unit (PDU) at a given location.

Description: This component is used primarily to allow the creation of DIS Entity PDUs at a
given location without Radio PDUs. It informs other entities of an ownship's location for tar-
geting or other purposes.

Table 246, "Entity control outputs" below lists and describes Entity control output variables:

Name Type Default Value Description

EntityNameIn string <Edit> The entity name. This variable can either be
hard -coded or driven from a host interface.

DomainNameIn string <Edit> The domain name. This variable can either
be hard -coded or driven from a host inter-
face.

ProtocolIdIn string <Edit> The protocol ID. This variable can either be
hard- coded or driven from a host interface.

WorldPositionBus id UNASSIGNED Links to a defined world position.

ForceCenterOfEarth Boolean FALSE When set to TRUE,WorldPositionBus is
ignored, and the world position is set to the
center of the earth.

MyLocationX,
MyLocationY,
MyLocationZ

float32 0.0 These variables display and output the cur-
rent world position.

Table 246: Entity control outputs

13.3 Fire
Summary: Fire looks at Fire protocol data units (PDUs) on the Distributed Interactive Sim-
ulation (DIS) network and outputs their values for use within the model.

Description: Fire triggers sounds and events based on incoming Fire PDUs from the DIS net-
work. Fire presents relevant fields needed to determine the sound, while other parts of the
PDU are ignored. All values are held until another Fire PDU is detected. Serial increments
with every Fire PDU detected on the network. PDU Type must equal two for Fire to present
the values. All nomenclature is based on the DIS standard for Fire PDUs.

202 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 247, "Fire control outputs" below lists and describes Fire control output variables:

Name Type Default
Value

Description

Serial uint32 0 Increments with each incoming Fire PDU, such as
Type 2 DIS PDUs. All other values in Fire update
with PDU Value 2, based on the incoming packet.

LocationX,
LocationY,
LocationZ

float32 0.0 The geocentric location in meters.

VelocityX,
VelocityY,
VelocityZ

float32 0.0 The geocentric velocity in meters per second.

Table 247: Fire control outputs

13.4 GeocentricWorldPosition
Summary: GeocentricWorldPosition provides a simple location feature that positions radios
and transmitters.

Description: GeocentricWorldPosition of the transmitter and receiver compute the dimin-
ishing power and occult by the Earth for line-of-sight transmissions. The standard model of
the Earth is a smooth ellipsoid. A terrain server may be used for accurate modeling.

GeocentricWorldPosition is identical to GeodeticWorldPosition, except that the input val-
ues for the position are given in terms of X, Y, and Z coordinates from the center of the Earth
in meters.

If the world position is 0, 0, 0 (i.e., the center of the Earth), then the ranging effects of any
attached radio are turned off, and the radio clearly receives all transmissions on its frequency.

Table 248, "GeocentricWorldPosition control inputs" below lists and describes the Geo-
centricWorldPosition control input variables:

Name Type Default
Value

Description

X float64 0.0 The X world position coordinate; units are in
meters.

Y float64 0.0 The Y world position coordinate; units are in
meters.

Z float64 0.0 The Z world position coordinate; units are in
meters.

Table 248: GeocentricWorldPosition control inputs

Copyright © 2025 Advanced Simulation Technology inc. 203

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 249, "GeocentricWorldPosition internal parameter" below describes the Geo-
centricWorldPosition internal parameter:

Name Type Default Value Description

WorldPositionBus id UNASSIGNED Selects the world position bus to assign a pos-
ition.

Table 249: GeocentricWorldPosition internal parameter

13.5 GeodeticWorldPosition
Summary: The GeodeticWorldPosition component provides a simple location feature for
the radio and transmitter positioning.

Description: The world positions of the transmitter and receiver are used to compute dimin-
ishing power and occulting by the earth for the line of sight transmissions. The model of the
earth is a smooth ellipsoid (model WGS84). The GeodeticWorldPosition is specified in alti-
tude in meters with latitude, and longitude in degrees.

Table 250, "GeodeticWorldPosition control inputs" below lists and describes Geo-
deticWorldPosition control input variables:

Name Type Default
Value

Description

Elevation float64 0.0 The altitude world position coordinate,
units are in meters.

Latitude float64 0.0 The latitude world position coordinate,
units are in degrees.

Longitude float64 0.0 The longitude world position coordinate;
units are in degrees.

Table 250: GeodeticWorldPosition control inputs

204 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 251, "GeodeticWorldPosition internal parameters" below and describes Geo-
deticWorldPosition internal parameter variables:

Name Type Default Value Description

WorldPositionBus id UNASSIGNED Selects the world position bus to assign a
position.

Position worldposn_geo-
centric

Selects the world position X, Y, Z coordin-
ates.

X float64 6378137

Y float64 0.0

Z float64 0.0

Table 251: GeodeticWorldPosition internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 205

Studio Components Reference Guide (Rev. T, Ver. 0)

13.6 RelativePosition
Summary: RelativePosition calculates the relative coordinates and velocities of an entity,
used with the Highway 3D Service and other orientation-dependent sound models. Figure 42,
"NED coordinate planes" below shows RelativePosition NED coordinate planes:

+X

+X

+X

+Z

+Z

+Z

+Y

+Y

+Y

Yaw

Pitch

Roll

Figure 42: NED coordinate planes

206 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 43, "RelativePosition earth plane" below shows the RelativePosition earth plane:

X

Y

Z

P
ri

m
e

 M
e

ri
d

ia
n

North

East

Down

Figure 43: RelativePosition earth plane

Table 252, "RelativePosition control inputs" on the next page lists and describes Rel-
ativePosition control input variables:

Name Type Default
Value

Description

Ent_Alt float64 1.0 The altitude of the entity position.

Ent_Lat float64 1.0 The latitude of the entity position.

Ent_Lon float64 1.0 The longitude of the entity position.

Ref_Alt float64 1.0 The altitude of the reference position.

Ref_Lat float64 1.0 The latitude of the reference position.

Ref_Lon float64 1.0 The longitude of the reference position.

Ref_Yaw float64 1.0 The measure of the angle formed from True North to
the entity’s +X axis. This angle is specified in degrees
and is positive clockwise along the +Z axis.

Copyright © 2025 Advanced Simulation Technology inc. 207

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Ref_Pitch float64 1.0 The measure of the angle between the reference
plane and the entity’s +X axis. This angle is specified
in degrees and is positive above the reference plane
(i.e., away from the ellipsoid).

Ref_Roll float64 1.0 The measure of the angle between the reference
plane and the entity’s +Y axis along a plane per-
pendicular to the entity’s X axis. It is the angle of rota-
tion about the X axis after applying the yaw and pitch.
Roll is specified in degrees and is positive clockwise
along the +X axis.

Table 252: RelativePosition control inputs

Table 252, "RelativePosition control inputs" above lists and describes RelativePosition con-
trol output variables:

Name Type Default
Value

Description

Distance float64 0.0 Distance from the reference point to the entity in
meters.

ApproachSpeed float32 0.0 The rate at which the entity and reference pos-
itions approach each other in meters per second.

Ent_X float64 6378137 The X position of the entity in the geocentric
coordinate system.

Ent_Y float64 0.0 The Y position of the entity in the geocentric
coordinate system.

Ent_Z float64 0.0 The Z position of the entity in the geocentric
coordinate system.

Ent_Speed float32 0.0 The instantaneous speed of the entity in meters
per second.

Ref_X float64 6378137 The X position of the reference point in the geo-
centric coordinate system. Units are in meters.

Ref_Y float64 0.0 The Y position of the reference point in the geo-
centric coordinate system. Units are in meters.

Ref_Z float64 0.0 The Z position of the reference point in the geo-
centric coordinate system. Units are in meters.

Rel_X_Pos float64 0.0 The X position of the entity relative to the position
and orientation of the reference frame.

208 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Rel_Y_Pos float64 0.0 The Y position of the entity relative to the position
and orientation of the reference frame.

Rel_Z_Pos float64 0.0 The Z position of the entity relative to the position
and orientation of the reference frame.

Rel_X_Vel float32 0.0 The relative velocity in the X direction between the
reference and entity positions.

Rel_Y_Vel float32 0.0 The relative velocity in the X direction between the
reference and entity positions.

Rel_Z_Vel float32 0.0 The relative velocity in the X direction between the
reference and entity positions.

Table 253: RelativePosition control outputs

Table 254, "RelativePosition debugging variables" on the next page lists and describes Rel-
ativePosition debugging variables:

Name Variable Type Default Value Description

E_Axis X float64 0.0 The vector pointing east in the
local geographic frame of the ref-
erence position.

Y 1.0

Z 0.0

D_Axis X float64 -1.0 The vector pointing down in the
local geographic frame of the ref-
erence position.

Y 0.0

Z 0.0

N_Axis X float64 0.0 The vector pointing north in the
local geographic frame of the ref-
erence position.

Y 0.0

Z 1.0

Vec_To_Entity X float64 0.0 Shows the direction to the entity
from the reference position.Y 0.0

Z 0.0

X_Axis X float64 0.0 The vector pointing forward from
the reference position (e.g., the
vector pointing through the nose
of the airplane, if the airplane is
the reference).

Y 0.0

Z 1.0

Copyright © 2025 Advanced Simulation Technology inc. 209

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Variable Type Default Value Description

Y_Axis X float64 0.0 The vector pointing down from the
reference position.Y 1.0

Z 0.0

Z_Axis X float64 -1.0 The vector pointing down from the
reference position.Y 0.0

Z 0.0

Table 254: RelativePosition debugging variables

210 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

14.0 Host Control
Before adding HostIns and HostOuts, you must first add a host model. A host model is
required to create the host I/O packets. Inside the host model, add a HostIn or HostOut, and
add the host I/O components, also known as packets.

To debug the host control, figure out if packets are coming in off the network from the host.
To determine packet activity, pay close attention to two items in the host interface:

l Live Capture: continuously displays packet activity from the host.

l Controller: displays packet statistics.

In Controller (i.e., HostIn Viewer), Fail Count always shows data if the host is working.
The numbers continue to increment in a loop. Total Packets Received increments over time
if the host control is working properly. TestIn and TestOut are for ASTi internal testing.
Contact ASTi for more information.

14.1 HostIn
Summary: HostInput (HostIn) is a user interface wrapper for control data fields extracted
from external sources, including host Ethernet control User Datagram Protocol (UDP) packets
and state machine cells, providing a means to apply incoming control data to other com-
ponents in the model. This section describes HostIn as used with the host Ethernet.

You can create and modify HostIn with IO Packet Editor. With this tool, define the source
of the data packet by the UDP port. Extracted individual HostIns to other model components,
serving as control variables.

Description: IO Packet Editor provides a means to functionally disassemble a host UDP
packet into individual fields. HostIn is the composite collection of individual data fields in a
specific packet. Other model components (i.e., data sinks) sometimes use HostIn's control
variables.

HostIn is analogous to the various Control objects inModel Builder. There is one fun-
damental difference between HostIn and an (MB) control object: MB includes a separate con-
trol object for each data type, while HostIn accommodates all available data types.

The process for creating and using HostIn follows:

1. In IO Packet Editor, enter the UDP port name of the host packet and the most-least
significant data order (i.e., big or little endian).

2. To create a variable within HostIn, enter the parameters defining the data field: offset
byte location within the packet (or in the case of a Boolean field, offset byte and bit),
the data type, and the initial value for the field.

Copyright © 2025 Advanced Simulation Technology inc. 211

Studio Components Reference Guide (Rev. T, Ver. 0)

After creating a HostIn data source, link it to a variable (i.e., data sink) inside another com-
ponent. The action of making a link is done on the sink side of the link. The link is visible
from the source side (i.e., the HostIn Used By shows the sink component name) and from the
sink side (i.e., the sink component From shows HostIn name).

Table 255, "HostIn interface elements" on page 214 lists and describes HostIn interface ele-
ments:

Setting Name Description

Name A descriptor for the component.

Offset The location of the data field within the packet, defined by the byte offset from
the start of the data field. The location of a packed byte input is further defined
by the bit position within a particular byte.

MsgLength Message length in bytes.

Type HostIn can be set to one of these data types:
l Unsigned integer, 8-bit (uint8)
l Unsigned integer, 16-bit (uint16)
l Unsigned integer, 32-bit (uint32)
l Unsigned integer, 64-bit (uint64)
l Signed integer, 8-bit (int8)
l Signed integer, 16-bit (int16)
l Signed integer, 32-bit (int32)
l Signed integer, 64-bit (int64)
l Floating point, 32-bit (float32)
l Floating point, 64-bit (float64)
l Boolean, (byte) True_False
l Character string (cstring)
l Nav identifier (ident)
l Packed byte (bits8_0–bits8_7)
l Binary message (message)
l Text file path (pathstring)

Init. Value The data field's initial value can be set by the application should the source
packet not be present due to failure to receive host packets. This is directly
analogous to the initial value featured in MB Control objects.

Function Add a basic function, including Add, Linear, Logical-and, Logical-or,
Logical-xor,Multiple, and Subtract.

Y Value used if a function is used. For more information, go to Section 5.14,
"MathFunction" on page 109.

Z Value used if a function is used. For more information, go to Section 5.14,
"MathFunction" on page 109.

Rscale Adds a scale factor to apply to the output of the function; works as the gain con-
trol. For more information, go to Section 5.14, "MathFunction" on page 109.

212 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Setting Name Description

Test Mode A local test mode can override the incoming value from the host packet and
manually set the value of a variable. Test modes for various fields can be
selectively enabled. A master test mode enable switch activates the test mode
for all test mode-enabled boxes. All boxes that are not test-mode enabled con-
tinue to get their value from either the host packet or their initial value if selec-
ted to do so and no host packets are being received. The application checks
test mode values for correct range. If an out-of-range test value is entered, the
application returns the default value. Selections =ON orOFF

Integers, all types l Test Mode Boolean, default value =OFF
l Value Integer, default value = 0
l Ramp Rate (Hz) Floating Pt., default value = 0.0
l Min Ramp Value Integer, default value = 0
l Max Ramp Value Integer, default value = 0

Floats, all types l Test ModeBoolean, default value =OFF
l ValueFloating Pt, default value = 0
l Ramp Rate (Hz) Floating Pt., default value = 0.0
l Min Ramp Value Floating Pt, default value = 0.0

Boolean l Test Mode Boolean, default value =OFF
l Value Boolean, default value = 0
l Toggle Rate (Hz) Floating Pt, default value = 0.0
l Mark/Space Floating Pt, default value = 0.5

For integers and floats If Test Mode = ON and Ramp Rate = 0, the value sets a static test value. If
Test Mode = ON and Ramp Rate > 0, the value is overridden, and a dynamic
test value periodically ramps fromMin Ramp toMax Ramp and back toMin
Ramp. The Ramp Rate is in Hertz.

For Booleans If Test Mode = ON and Toggle Rate = 0, the value sets a static test value. If
Test Mode = ON and Toggle Rate >0, the value is overridden, and a dynamic
test value toggles between 1 and 0. The Toggle Rate is in Hertz. The
Mark/Space ratio controls how long the Boolean is 1 relative to the cycle dur-
ation. The Boolean is 0 for the period of the entire 1/0 toggle cycle (e.g., a
value of 0.5 means that in a given period, the Boolean output is 1 for half of the
time and 0 for the other half).

Test Value Sets the desired test value the component will use.

Used By Defines connection to a control sink point (i.e., variable) in another com-
ponent.

Note: You can modify HostIn's value (e.g., inverted, scaled, offset) at the
link's sink point.

Other Edits the dynamic test parameters, specifically the <ramp> setting, including
mode, frequency, minimum, and maximum.

Copyright © 2025 Advanced Simulation Technology inc. 213

Studio Components Reference Guide (Rev. T, Ver. 0)

Setting Name Description

Description Used for comments.

Table 255: HostIn interface elements

Table 256, "HostIn control output" below lists and describes the HostIn control output vari-
able:

Name Type Default
Value

Description

N/A Control data N/A The HostIn output value is based on para-
meters that you set (i.e., offset byte, data type,
etc.).

Table 256: HostIn control output

Table 257, "HostIn internal parameters" on the facing page lists and describes HostIn internal
parameter variables:

Name Type Default
Value

Description

Endianess List Little Endian Changes the byte order. The endianness
defines the byte order for the data in a packet.

Use Init Value List Never This list box decides what should happen in the
event of a loss of reception of UDP packets.
l Never: if UDP data stops, the outputs from
HostIn go to zero.

l Load: when the project loads, HostIn out-
puts Init. Value values until it receives UDP
packets.

l Load/Source Fail: upon loss of UDP pack-
ets for a period exceeding the value in
Timeout(s), HostIn outputs the values in
Init. Value.

Enable Testing Check box Selected Allows operation of Test Mode, Test Value,
andOther for local testing. When cleared,
these settings are disabled.

Timeout (s) Entry box 1 Sets the threshold for assumed communication
failure when a packet has not arrived within the
set amount of time in seconds.

Clear Testmode Radio but-
ton

N/A This radio button resets anyOn entries in Test
Mode toOff.

214 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Align Offset Radio but-
ton

N/A Byte-aligns entries in the ICD.

Note: This variable does not work with packed
bytes.

Add To Connector Radio but-
ton

N/A Links selected entries in the ICD to a specified
connector.

Live Capture Select N/A Opens a window showing the current values for
each entry in the ICD in real time. You can also
capture and save the display as a comma-sep-
arated value (.csv) file.

Import ICD Select N/A Select a .csv file to fill the entries in the Host
Packet Editor.

Controller Select N/A Opens the HostIn Viewer for the associated
UDP interface for this packet.

Table 257: HostIn internal parameters

14.2 HostOut
Summary: Host Output (HostOut) provides a way to send control values from the model to
a destination host computer via the system’s Ethernet interface.

Create and modify HostOuts with the IO Packet Editor. With this tool, define the outgoing
host data packet by the user datagram protocol (UDP) port, then link model control sources to
individual control variables within the outgoing packet. Model control sources include any
component with a control output:

l Host input

l Math components

l Component status fields

Description: IO Packet Editor provides a means to functionally assemble a host UDP
packet from individual model controls. HostOut is a composite collection of specific data
fields from model controls, packed into an outgoing Ethernet packet.

HostOut is analogous to the various control objects inModel Builder. There is one fun-
damental difference between HostOut andModel Builder:

1. Whereas theModel Builder included a separate control object for each data type,
HostOut encompasses all variables within an outgoing packet.

2. Additionally HostOut accommodates all available data types.

Copyright © 2025 Advanced Simulation Technology inc. 215

Studio Components Reference Guide (Rev. T, Ver. 0)

The process for creating and using HostOut follows:

1. In IO Packet Editor, enter the UDP port of the destination host computer and the
most-least significant data order (big or little endian).

2. To create a field within HostOut, define the parameters defining the data field (i.e., off-
set byte location within the packet, or in the case of a Boolean field, offset byte and bit
and the data type) and link to a model control source.

Each field in HostOut is defined by the following:

l Name: contains a description of the component.

l Offset: the location of the data field within the packet, defined by the byte offset from
the start of the data field. The location of a packed-byte input is further defined by the
bit position within the byte.

l MsgLen: message length in bytes.

l Type: HostOut can be set to one of these data types:
o Unsigned Integer, 8-bit (uint8)
o Unsigned Integer, 16-bit (uint16)
o Unsigned Integer, 32-bit (uint32)
o Unsigned Integer, 64-bit (uint64)
o Signed Integer, 8-bit (int8)
o Signed Integer, 16-bit (int16)
o Signed Integer, 32-bit (int32)
o Signed Integer, 64-bit (int64)
o Floating Point, 32-bit (float32)
o Floating Point, 64-bit (float64)
o Boolean, 1-byte
o Character string (cstring)
o Nav identifier (ident)
o Packet byte (bits8_0–bits8_7)
o Binary message (message)
o Text file path (pathstring)

216 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

l Used by: the source field defines the link to a model control source.

l Description: comments field.

Table 258, "HostOut control output" below describes the HostOut control output variable:

Name Type Default
Value

Description

N/A Control data N/A The HostOut value is based on parameters (i.e., off-
set byte, data type, source, etc.).

Table 258: HostOut control output

Table 259, "HostOut internal parameters" below lists and describes HostOut internal para-
meters:

Name Type Default
Value

Description

Endianness List Little Endian Changes the byte order. The endianness defines
the byte order for the data in a packet.

Timeout (s) Entry box 1 Sets the threshold for assumed communication
failure when a packet has not arrived within the
set amount of time in seconds.

AlignOffset Radio button N/A Correctly byte-aligns entries in the ICD.

AddToConnector Radio button N/A Links selected entries in the ICD to a specified
connector.

LiveCapture Select N/A Opens a window showing the current values for
each entry in the ICD in real time. You can also
capture and save the display as a comma-sep-
arated value (.csv) file.

ImportICD Select N/A Lets you upload a .csv file to fill Host Packet
Editor entries.

Controller Select N/A Opens the HostOut Viewer for the associated
UDP interface for this packet.

Table 259: HostOut internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 217

Studio Components Reference Guide (Rev. T, Ver. 0)

14.3 CellService
Summary: CellService provides an invisible data connection between objects that declare
they are attached to a common cell channel. All connectivity between a specific cell channel
and the source and source or sink objects is carried out via cell service links.

Note: As with all service-type components, you do not manually instigate the creation of the
service object; this is done automatically on demand by the loader when it detects that a
component has a cell service port connection. Only one service component of the appro-
priate type will be loaded based on the first found need for a service of this type.

Description: The only user-defined input to this primitive will be the selected bus handle. No
other inputs or settings are required. Available buses for use are declared through the CellSer-
vice tool. Within the tool, a bus name is defined and the tool assigns an internal index num-
ber as a bus ID. By default, the tool assigns the bus ID numbers incrementally. Internally the
cell service uses the bus ID number to link inputs and outputs.

14.3.1 CellIn

Summary: Cell Input (i.e., CellIn) serves as a user interface wrapper for control data fields
extracted from external sources. These sources include host Ethernet control User Datagram
Protocol (UDP) packets and state machine cells that apply incoming control data to other com-
ponents in the model.

Description: CellIn is a collection of 40 individual data bytes in a specific packet. The indi-
vidual bytes within CellIn (i.e., data sources) are used as control variables by other model
components (i.e., data sinks).

Table 260, "CellIn control inputs" below lists and describes CellIn control input variables:

Name Type Default
Value

Description

CellData uint8 0 A collection of 40 unsigned bytes that connect to
other components in the model.

NewCellData Boolean FALSE When TRUE, new cell data UDP packets are
recognized. This input was created for specific use
by the LS653 state machine.

Table 260: CellIn control inputs

218 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 261, "CellIn internal parameters" below lists and describes CellIn internal parameter
variables:

Name Type Default Value Description

CellBusId id UNASSIGNED Assigns to CellService, linking components
together.

CellReceiveCount uint32 0 The count of the number of cells received from
the cell daemon.

Table 261: CellIn internal parameters

14.3.2 CellOut

Summary: CellOut transmits bytes of data generated by specific components.

Description: CellOut provides a way to send control values from the model to a destination
host computer via the system, using an Ethernet interface. CellOut is a composite collection
of specific data bytes from model controls, packed into an outgoing Ethernet packet.

Table 262, "CellOut control output" below describes the CellOut control output variable:

Name Type Default
Value

Description

CellData uint8 0 CellData can only be a collection of 40
unsigned bytes, each of which can be used as
a control to connect to other components within
the model.

Table 262: CellOut control output

Table 263, "CellOut internal parameters" below lists and describes CellOut internal para-
meters:

Name Type Default Value Description

CellBusId id UNASSIGNED Assigns to Cell Bus Service, linking com-
ponents together.

CellTransmitCount uint32 0 The count of the number of cells transmitted
from the cell daemon.

Table 263: CellOut internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 219

Studio Components Reference Guide (Rev. T, Ver. 0)

15.0 Radio
Building radios in Telestra is slightly different from the traditional modeling used in other
ASTi generations of software. A basic radio is now made up of two components: a Trans-
ceiver and a Radio Control Unit (RCU). The two objects are analogous to live radios on
many aircraft. Typically, a base unit is responsible for the over-the-air transmission known as
the radio transceiver (RT) and control heads that serve as the interface for the pilot or copilot.

The idea in Telestra is that every radio requires use of Transceiver, a master object which
can be used for any radio, but it contains a minimum of settings. This way, if you want to sim-
ulate two different types of radios, the RCU is used to customize the Transceiver to be an
ARC-210 versus an ARC-232.

The third piece of the radio is the fill that it receives from the commplan located in the pro-
ject Layout of the project. The commplan provides a flexible way of adjusting internal radio
parameters such asModulation Type or the Transmit Gain. Previous generations of ASTi
software accomplished the fill as aMode Table within Radio. The fills in the Comm Plan
make it easy to share mode settings across several radios in a model. In addition to the dif-
ferent mode settings, the fill of a radio can also set default frequencies.

The most commonly set radio uses two components:

l Transceiver

l RCUbasic

The RCU provides a fill from the commplan as well as a suite of parameters that can over-
ride their counterparts from within the fill. For example, RCUbasic has a loaded fill using
Net 1, which sets the frequency of the radio to 101 megahertz (MHz). This information is
sent down to Transceiver via Transceiver ID located in both components. To keep every set-
ting in the net the same except for a new frequency of 105 MHz, set the frequency of the
RCU to 105 MHz, which overrides the fill, and Transceiver acts accordingly.

A radio can switch between any number of nets, defined in the commplan, each of which can
be custom-tailored to provide control over parameters such as modulation, noise, bandwidth,
cryptosystem and key, frequency-hopping net ID, satellite communications (SATCOM), and
other parameters. The default commplan fill supports the most common modes used by real
radio frequency (RF) radios, including ultra high frequency (UHF), very high frequency
(VHF), high frequency (HF), Single Channel Ground and Airborne Radio System
(SINCGARS), and HAVEQUICK (HQ). This allows you to get started quickly while retain-
ing the flexibility to further fine tune the simulation. Transceiver is also capable of receiving
and transmitting Tactical Data Link (TDL) messages. Various voice-encoding schemes are
also supported including Continuously Variable Slope Delta (CVSD), mu-law and pulse-code
modulation (PCM).

In general, settings that relate to how the radio appears on the network are in Transceiver,
and settings that customize the radio for simulation are placed in the RCU.

220 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

The following section details Radio components and the objects within them. Radio com-
ponents include the following:

l ColocatedBeacon

l GenericControl

l HfServer

l ICU

l IntercomTransceiver

l MarkerTone

l MorseKeyer

l RCUbasic

l RCUcryptokey

l RCUfrequency

l RCUhavequick

l RCUoverride

l RCUsincgars

l RCUtxpower

l Receiver

l Relay

l Satellite

l Transceiver

l Transmitter

l VORTAC_Controller

15.1 ColocatedBeacon
Summary: ColocatedBeacon creates the audio to simulate colocated VOR and TACAN trans-
mitters. Morse identifier tones generate for both transmitters.

Description: Allocated VOR and TACAN transmitters present a special case when simulating
navigational aids. Both transmitters produce a Morse identifier that constantly broadcast over
the air, but the IDs broadcast in sequence. As a result, ColocatedBeacon is actually two sep-
arateMorseKeyers that never play at the same time.

Copyright © 2025 Advanced Simulation Technology inc. 221

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 44, "ColocatedBeacon timing diagram" below shows basic timing:

TACAN ID

VOR_OutSignal

TACAN_OutSignal

VOR_Count = 2 VOR IDVOR ID

Figure 44: ColocatedBeacon timing diagram

Table 264, "ColocatedBeacon audio outputs" below lists and describes ColocatedBeacon
audio output variables:

Name Type Default
Value

Description

TACAN_OutSignal audio N/A Outputs the keyed word for TACAN radio at
appropriate intervals when ColocatedBeacon is
enabled.

VOR_OutSignal audio N/A Outputs the keyed word for VOR radio at appro-
priate intervals when ColocatedBeacon is
enabled.

Table 264: ColocatedBeacon audio outputs

Table 265, "ColocatedBeacon control inputs" on the facing page lists and describes
ColocatedBeacon control input variables:

Name Type Default
Value

Description

Enable Boolean TRUE TRUE enables ColocatedBeacon.

Ident ident N/A The ASCII characters drivingMorseKeyer. Ident
is special variable type defined as four ASCII
characters combined together. Only HostIn can
drive Ident.

Interval float32 1.0 Sets delay between words in seconds.

TACAN_Fre-
quency

float32 1.0 Provides frequency (i.e., pitch) of TACANMorse
tone. Units are in Hertz.

TACAN_Gain float32 1.0 Scales strength of TACAN output signal's gen-
erated tone.

222 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

TACAN_ILSPause Boolean FALSE Places space between Ident's first and second
characters. When FALSE, TACAN keyer uses
normal Morse code inter-character timing (i.e.,
three-dot gap between each Ident character).
When TRUE, TACAN keyer uses standard
Morse code interword timing between first and
second characters (i.e., seven-dot gap). Inter-
character timing for subsequent Ident characters
use standard Morse code intercharacter spacing
(i.e., three-dot gap).

VOR_Count uint16 1 Number of times VOR identifier plays before key-
ing TACAN identifier. VOR and TACAN identifier
tones are mutually exclusive.

VOR_Frequency float32 1.0 Sets VORMorse tone's frequency (i.e., pitch).
Units are in Hertz.

VOR_Gain float32 1.0 Scales strength of VOR output signal's gen-
erated tone.

VOR_ILSPause Boolean FALSE Places a space between the first and second
characters of the Ident. When FALSE, the VOR
keyer uses normal Morse code intercharacter tim-
ing, which is a three-dot gap between all Ident
characters. When TRUE, the VOR Keyer uses a
standard Morse code inter-word timing between
the first and second characters (i.e., a seven-dot
gap). Inter-character timing for subsequent Ident
characters use standard Morse code inter-
character spacing (i.e., a three-dot gap).

Wordrate uint8 1 Determines the rate that the word keys in dots
per second. Faster rates produce higher num-
bers.

Table 265: ColocatedBeacon control inputs

Copyright © 2025 Advanced Simulation Technology inc. 223

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 266, "ColocatedBeacon control outputs" below lists and describes ColocatedBeacon
control output variables:

Name Type Default
Value

Description

TACAN_Active Boolean FALSE TRUE when keying a dot/dash, mimicking the
keyer's beep.

VOR_Active Boolean FALSE When keying a dot or a dash, this variable
becomes TRUE, mimicking the keyer's beep.

TACAN_Busy Boolean FALSE Indicates if the TACAN keyer is actively pro-
ducing Morse audio.

VOR_Busy Boolean FALSE This flag indicates if the VOR keyer is actively
producing Morse audio.

Table 266: ColocatedBeacon control outputs

15.2 GenericControl
Summary: Generic radio control for the radio simulated environment.

Description: GenericControl is a Radio Control Unit (RCU) designed for use where mul-
tiple RCUs are hooked onto the same Transceiver. It mimics RCUbasic with one key excep-
tion: any updates to the parameters of the RCU are sent to Transceiver on a change instead
of all the time. This process allows the model to have two GenericControls, each with a dif-
ferent frequency, correctly driving Transceiver. At any given time, Transceiver takes the
last sent value for a parameter and ignore those same settings on other RCUs.

224 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 45, "GenericControl timing diagram" below illustrates GenericControl changing the
frequency of Transceiver in time:

GenericControl1

GenericControl2

Transceiver

101MHz

101MHz

101MHz

1

GenericControl1

GenericControl2

Transceiver

105MHz

105MHz

101MHz

2

Generic

Control1

GenericControl2

Transceiver

105MHz

101MHz

101MHz

3

Host

Figure 45: GenericControl timing diagram

Copyright © 2025 Advanced Simulation Technology inc. 225

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 267, "GenericControl control inputs" below lists and describes GenericControl control
input variables:

Name Type Default Value Description

CryptoKey uint16 0 For radio encryption to work, match-
ing crypto keys are required in all
crypto modes. This variable must be
identical for tuning.

Fill fill <Select> Insert the fill created in the Comm
Plan by double-clicking Value.

FreqHopNetID uint16 0 Frequency-hopping network ID.

FreqHopSyncTOD uint32 0 Identifies the time of day used in fre-
quency hopping.

FreqHopTranSecKey uint16 0 TranSec key for hop-pattern gen-
eration.

FreqHop HopSetWOD uint16 0 Identifies the set of frequencies used
in hopping pattern.

FreqHopLockOutId uint16 0 Excluded frequencies in hop pattern.

FreqHopSystem uint16 0 Sets the system type to enable fre-
quency hopping, such as
HAVEQUICK or SINCGARS. When
the value is 0, hopping is disabled.

Frequency uint64 0 Current radio tune frequency in
Hertz.

Net uint32 1 Net defines the core radio features,
including frequency, Tx frequency,
waveform, crypto, and frequency
hopping. Net parameters are set in
the commplan.

TransceiverId id UNASSIGNED TransceiverID tells the RCU which
Transceiver it should control.

TxFrequency uint64 0 The transmit frequency in Hertz. For
use only if the transmit frequency dif-
fers from the receive frequency.

TxPower float32 0.0 Radio Tx power in Watts.

Table 267: GenericControl control inputs

226 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

15.3 HfServer
Summary: HfServer allows control of the HfServer application, providing real-time, high-
fidelity modeling of HF radios.

Description: HfServer computes propagation effects between virtual radios, taking into
account such things as transmitter-receiver global position, season, time of day (i.e., day-night
terminator), and solar activity. To properly simulate solar activity and seasonal and circadian
effects on the ionosphere and high frequency (HF) radio signal propagation, HfServer
requires that the Smoothed Sunspot Number (SSN) and Time-of-Day offset be set. These para-
meters are set through use of HfServer.

Note: Set configuration parameters related to the HfServer's network behavior, (e.g., the
interface and User Datagram Protocol (UDP) port number to send or receive HF requests)
via the Distributed Interactive Simulation (DIS) gateway configuration in the project.

Use Offset to force HfServer to return results for a night mission, even though the exercise
takes place during the day. Likewise, use seasonal effects typical of winter propagation in
July.

For example, if you're conducting an exercise on the East Coast of the US during summer
(GMT +5) at 8:00 a.m. (08:00 Eastern Standard Time), HfServer's local clock reads 13:00
GMT. If the simulated scenario takes place on the West Coast of the US, during summer
(GMT +8) at 3:30 p.m. (15:30 Pacific Standard Time), then a clock in the simulated world
reads 23:30 GMT. The difference between the simulated GMT (23:30) and the real-world
GMT (13:00) is the time-of-day Offset (i.e., +10.5 hours).

Table 268, "HfServer control inputs" below lists and describes HfServer control input vari-
ables:

Name Type Default
Value

Description

SSN uint32 100 Smoothed Sunspot Number. Typical values of the
SSN range from 0–250, depending on past and cur-
rent sunspot activity.

Offset int32 0 Time-of-day offset in seconds between the
HfServerclock (local time in GMT) and the sim-
ulation time (in GMT).

DomainNameIn string N/A Lets a host platform set the domain name string
remotely. This input typically works in conjunction
with NumToString. Go to the DomainName string
definition for syntax.

Table 268: HfServer control inputs

Copyright © 2025 Advanced Simulation Technology inc. 227

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 269, "HfServer internal parameter" below describes the HfServer internal parameter
variable:

Name Type Default
Value

Description

DomainName string <Edit> (Required) Part of the ASTiNet property set that
defines a common communication environment.
Radios in the same domain can communicate,
while radios in separate domains cannot. It's ana-
logous to a DIS exercise ID or an HLA Federation
name. As an ASCII string, Transceiver is a native
ASTiNet radio. When that string matches a defined
DIS domain in a project, it maps the domain name
to a DIS exercise ID.

To define a DIS exercise ID , enter “DIS:N”, where
N=1–255. For example, “DIS:1” places the radio in
DIS exercise ID #1.

Important: DomainName specifies which HF con-
figuration is valid. Use this variable to control mul-
tiple domains with multiple HfServers.

Table 269: HfServer internal parameter

15.4 IntercomTransceiver
Summary: IntercomTransceiver is a simple version of Transceiver that works with Inter-
com Control Unit (ICU) to create a network intercom.

Description: IntercomTransceiver connects to an ICU to create a network intercom that
broadcasts audio over the Distributed Interactive Simulation (DIS) network. Unlike the Trans-
ceiver, the IntercomTransceiver operates as an intercom only. It does not have the full radio
features.

228 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 270, "IntercomTransceiver control inputs" below lists and describes Inter-
comTransceiver control input variables:

Name Type Default
Value

Description

DomainNameIn string N/A Allows a host platform to set the domain name
string remotely. This input is typically used in con-
junction with NumToString.

LocalPTT Boolean FALSE When FALSE, the radio transmits when it receives
active audio and stops transmitting when the audio
stops. When TRUE, the radio transmits per-
sistently, even if it does not receive active audio.

PowerIn Boolean TRUE Enables or disables power for Inter-
comTransceiver. If disconnected, the default
value is TRUE.

ProtocolIdIn string N/A Allows a host platform to set the ProtocolIdIn
string remotely. This input is typically used in con-
junction with NumToString.

Table 270: IntercomTransceiver control inputs

Table 271, "IntercomTransceiver control outputs" below lists and describes Inter-
comTransceiver control output variables:

Name Type Default Value Description

TxStatus
TxAudio audio N/A Audio input feed functioning Tx audio for Trans-

ceiver.
TxActive Boolean FALSE Shows if IntercomTransceiver is transmitting.

RxStatus
RxAudio audio N/A Received audio fed to the intercom service.

RxActive Boolean FALSE Shows if IntercomTransceiver is receiving.

LocalAudio
RxTuneTone audio N/A Audio input that functions as audio received from

Transceiver's receiver stage.

Table 271: IntercomTransceiver control outputs

Copyright © 2025 Advanced Simulation Technology inc. 229

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 272, "IntercomTransceiver internal parameters" below describes IntercomTransceiver
internal parameters:

Name Type Default Value Description

RCUParameters

NetName string <Edit> Net name of RCUbasic.

Audio

encoding-rate uint32 8000 Encoding rate of RCUbasic.

encoding-type EncodingType MuLaw Encoding type of RCUbasic.

TxStatus

TxChannel uint64 0 Reflects the transmit channel set in the ICU.

TxPower float32 1.0 Not used.

Table 272: IntercomTransceiver internal parameters

Table 273, "Other IntercomTransceiver internal parameters" on the facing page lists and
describes other IntercomTransceiver internal parameter variables:

Name Type Default Value Description

DomainName string <Edit> Part of the ASTiNet property set and
defines a common communication envir-
onment. All Transceivers in the same
domain have the ability to communicate,
and Transceivers in separate domains
can never communicate. It is analogous to
a DIS exercise ID or a high-level archi-
tecture (HLA) Federation name. As an
ASCII string, Transceiver is an ASTiNet
Radio. When that string matches a defined
DIS domain as the project level, it maps the
domain name to a DIS exercise ID.

As a shortcut, define a DIS exercise ID by
entering DIS:N, where N = 1–255. For
example, DIS:1 puts the Transceiver in
DIS exercise ID #1.

IntercomBus id UNASSIGNED Assigns IntercomTransceiver to Inter-
comBusService. IntercomBusService
allows for input audio, sidetone audio, and
output audio to be passed around among
components that are connected to the bus.

230 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

IntercomName string <Edit> Set an identification name for the Inter-
comTransceiver.

Mode TunerMode None Displays whether IntercomTransceiver is
in Voice over Internet Protocol (VoIP) or
intercommode. Radio modes are not sup-
ported.

NetName string <Edit> Indicates the set net name.

PowerBus id UNASSIGNED Connects to PowerService to receive
power instead of using a control.

PowerState Boolean TRUE Displays the power state of Inter-
comTransceiver.

ProtocolID string <Edit> Turns a radio into a DIS radio by setting the
DIS identifiers (e.g., Host ID, Radio ID). Pro-
tocolID setsMarking Field, labeling the
radio “local” and unpublished on the net-
work.
l DIS:#.#.#.#: sets the site, application,
entity, and radio IDs.

l DIS:#.#: sets the entity and radio IDs.
l DIS:#: sets the radio ID.
l DIS: automatically sets all four IDs.
l LCL: sets the radio as “local” and unpub-
lished on the network.

If any are blank, the variable automatically
generates remaining identifiers. It sets the
site and application ID via the IP address's
last two octets. It also automatically gen-
erates the entity and radio IDs. You can
append the above examples with another
colon and the DIS marking field.

For example, DIS:100.3:RedForce1 sets
the Entity ID to 100, the Radio ID to 3, and
theMarking Field to RedForce1.

RxChannel uint64 0 Reflects the receive channel set in the ICU.

TransceiverID id UNASSIGNED Defines the connection between the Inter-
comTransceiver and the ICU.

Table 273: Other IntercomTransceiver internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 231

Studio Components Reference Guide (Rev. T, Ver. 0)

15.5 ICU
Summary: ICU works with IntercomTransceiver to create a network intercom.

Description: The network intercom provides a simple method of running networked com-
munications and is the easiest way to connect two operators over a network. The ICU com-
ponent is a control unit for Transceivers and removes most of the radio functionality such as
bandwidth or propagation. Two intercoms must be in INTERCOM mode per the net and fill
and have a matching channel, in the same way two radios must have a matching frequency.

The ICU helps to extend intercom capability beyond local operators and goes across a local
area network (LAN) or wide area network (WAN) allowing multiple Telestra servers to com-
municate with each other when full fidelity radios are not required or desired. The ICU also
uses fewer credits than a network radio.

Note: The ICU component can be used with the Transceiver, but that is not a recommended
configuration.

Table 274, "ICU control inputs" below lists and describes ICU control input variables:

Name Type Default Value Description

Fill fill <Select> Insert the fill created in the Comm Plan by double-
clicking Value.

Net uint32 1 Set in the Comm Plan. Set all nets to Intercom
mode or use the default Clearcom net.

TransceiverID id UNASSIGNED TransceiverID tells the ICU which Inter-
comTransceiver it should control.

Channel uint64 0 Defines the ICU channel number. In order to
receive over the network, both channel numbers
must be equal. Valid values are 0–99,999.

Table 274: ICU control inputs

15.6 MarkerTone
Summary:MarkerTone add navigational beacons to a model.

Description:MarkerTone adds the Outer Marker, Middle Marker, Inner Marker, and Fan
Marker navigational beacons to a model. The default values are set to FAA standards. While
the component provides four separate beacons, the component can only consider one of the
beacons at a time. An input control selects which beacon to use.

232 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 275, "MarkerTone audio outputs" below describes theMarkerTone audio output vari-
able:

Name Type Default
Value

Description

OutSignal audio N/A OutSignal is the audio output signal fromMark-
erTone.

Table 275: MarkerTone audio outputs

Table 276, "MarkerTone control inputs" on page 235 describesMarkerTone control input
variables:

Name Type Default
Value

Description

Enable Boolean TRUE When TRUE,MarkerTone is enabled.

Frequency1 float32 1.0 Sets the pitch for the keyed tone when IdentIndex is
1. The default is 400 Hz for the Outer Marker.
l Modifier: 400.0

Frequency2 float32 1.0 Sets the pitch for the keyed tone when IdentIndex is
2. The default 1300 Hz for the Middle Marker.
l Modifier: 1300.0

Frequency3 float32 1.0 Sets the pitch for the keyed tone when IdentIndex is
set to 3. The default 3000 Hz for the Inner Marker.
l Modifier: 3000.0

Frequency4 float32 1.0 Sets the pitch for the keyed tone when IdentIndex is
set to 4. The default is 3000 Hz for the Fan Marker.
l Modifier: 3000.0

Frequency5 float32 1.0 Sets the pitch for the keyed tone when IdentIndex is
5.
l Modifier: 0.0

Frequency6 float32 1.0 Sets the pitch for the keyed tone when IdentIndex is
6.
l Modifier: 0.0

Frequency7 float32 1.0 Sets the pitch for the keyed tone when IdentIndex is
7.
l Modifier: 0.0

Copyright © 2025 Advanced Simulation Technology inc. 233

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Frequency8 float32 1.0 Sets the pitch for the keyed tone when IdentIndex is
8.
l Modifier: 0.0

Gain float32 1.0 Gain applies a linear volume control to theMark-
erTone audio output.

Interval1 uint16 0.0 Sets the delay between repeating the keyed word
when IdentIndex is 1. Units are in seconds.

Interval2 uint16 0.0 Sets the delay between repeating the keyed word
when IdentIndex is 2. Units are in seconds.

Interval3 uint16 0.0 Sets the delay between repeating the keyed word
when IdentIndex is 3. Units are in seconds.

Interval4 uint16 0.0 Sets the delay between repeating the keyed word
when IdentIndex is 4. Units are in seconds.

Interval5 uint16 0.0 Sets the delay between repeating the keyed word
when IdentIndex is 5. Units are in seconds.

Interval6 uint16 0.0 Sets the delay between repeating the keyed word
when IdentIndex is 6. Units are in seconds.

Interval7 uint16 0.0 Sets the delay between repeating the keyed word
when IdentIndex is 7. Units are in seconds.

Interval8 uint16 0.0 Sets the delay between repeating the keyed word
when IdentIndex is 8. Units are in seconds.

IdentIndex uint8 1.0 Selects which marker beacon (IdentChar) is trans-
mitted. A value of 0 selects none. A value of 1 selects
Ident1 (i.e., Outer Marker). A value of 2 selects
Ident2 (i.e., Middle Marker). A value of 3 selects
Ident3 (i.e., Inner Marker). A value of 4 selects Ident4
(i.e., Fan Marker).

StrictTiming Boolean TRUE When TRUE,MarkerTone uses properMarkerTone
intercharacter timing, which is a one-dot gap
between Ident characters. When FALSE,Mark-
erTone uses standard Morse code intercharacter tim-
ing, which is a three-dot gap between Ident
characters.

Wordrate1 uint8 1 Determines the rate at which the word is keyed when
IdentIndex is 1.
l Modifier: 11

234 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Wordrate2 uint8 1 Determines the rate at which the word is keyed when
IdentIndex is 2.
l Modifier: 10

Wordrate3 uint8 1 Determines the rate at which the word is keyed when
IdentIndex is 3.
l Modifier: 18

Wordrate4 uint8 1 Determines the rate at which the word is keyed when
IdentIndex is 4.
l Modifier: 8

Wordrate5 uint8 1 Determines the rate at which the word is keyed when
IdentIndex is 5.
l Modifier: 11

Wordrate6 uint8 1 Determines the rate at which the word is keyed when
IdentIndex is 6.
l Modifier: 10

Wordrate7 uint8 1 Determines the rate at which the word is keyed when
IdentIndex is 7.
l Modifier: 18

Wordrate8 uint8 1 Determines the rate at which the word is keyed when
IdentIndex is 8.

Table 276: MarkerTone control inputs

Table 277, "MarkerTone control outputs" below lists and describesMarkerTone control out-
put variables:

Name Type Default
Value

Description

Active Boolean FALSE When keyer is keying a dot or a dash, this goes
TRUE, essentially mimicking the beep of the keyer.

Busy Boolean FALSE WhenOutSignal is active audio, Busy is TRUE.

Table 277: MarkerTone control outputs

Copyright © 2025 Advanced Simulation Technology inc. 235

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 278, "MarkerTone internal parameters" below lists and describesMarkerTone internal
parameter variables:

Name Type Default
Value

Description

Ident1 ident T The identifier the keyer plays when IdentIndex is 1.
A value of T plays a single dash in Morse code.

Ident2 ident A The identifier the keyer plays when IdentIndex is 2.
A value of A plays a dot dash in Morse code.

Ident3 ident E The identifier the keyer plays when IdentIndex is to
3. A value of E plays a single dot in Morse code.

Ident4 ident I The identifier the keyer plays when IdentIndex is 4.
A value of I plays a dot dot in Morse code.

Ident5 ident <Edit> The identifier the keyer plays when IdentIndex is 5;
useful if you want to create your own marker.

Ident6 ident <Edit> The identifier the keyer plays when IdentIndex is 6;
useful if you want to create your own marker.

Ident7 ident <Edit> The identifier the keyer plays when IdentIndex is 7;
useful if you want to create your own marker.

Ident8 ident <Edit> The identifier the keyer plays when IdentIndex is 8;
useful if you want to create your own marker.

Table 278: MarkerTone internal parameters

15.7 MorseKeyer
Summary:MorseKeyer creates a four-letter Morse code sequence.

Description:MorseKeyer translates four-letter words into Morse code. The component con-
trols the word rate, interval, and the frequency (i.e., pitch) of the generated tone. In addition
to the usual letters and numbers defined in Morse code, it also includes the characters * and -
to represent individual dot and dash combinations.

Table 279, "MorseKeyer audio output" below lists and describes theMorseKeyer audio out-
put variable:

Name Type Default
Value

Description

OutSignal audio N/A Outputs keyed word when press-to-talk (PTT) control
is enabled.

Table 279: MorseKeyer audio output

236 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 280, "MorseKeyer control inputs" below lists and describesMorseKeyer control input
variables:

Name Type Default
Value

Description

Enable Boolean TRUE When TRUE, it enables theMorseKeyer. When
FALSE, theMorseKeyer is disabled.

Frequency float32 1.0 Provides the frequency (i.e., pitch) of the Morse tone.
Units are in Hertz.

Gain float32 1.0 Scales the strength of the generated tone.

Ident ident N/A The four-letter word converted into Morse code. Ident
is a special variable type defined as four combined
ASCII characters. HostIn drives Ident.

Interval float32 1.0 Total cycle in seconds before the Identmessage
starts playing, including pause. To calculate this num-
ber, use the following formula:

Word Rate Time + (Wordrate - Interval)

The interval number must be larger than the word
rate.

ILSPause Boolean FALSE When FALSE,MorseKeyer uses normal Morse
code inter-character timing, which is a three-dot gap
between all Ident characters. When TRUE,
MorseKeyer uses standard Morse code interword
timing between first and second characters (i.e., a
seven-dot gap). Inter-character timing for sub-
sequent Ident characters use standard Morse code
inter-character spacing (i.e., a three-dot gap).

Wordrate uint8 1 Determines rate at which word is keyed.

Table 280: MorseKeyer control inputs

Table 281, "MorseKeyer control outputs" below lists and describesMorseKeyer control out-
put variables:

Name Type Default Value Description

Active Boolean FALSE TRUE when the keyer is keying dot or dash, mim-
icking the keyer's beep.

Busy Boolean FALSE Indicates ifMorseKeyer actively produces audio.

Table 281: MorseKeyer control outputs

Copyright © 2025 Advanced Simulation Technology inc. 237

Studio Components Reference Guide (Rev. T, Ver. 0)

15.8 RCUbasic
Summary: RCUbasic pairs with Transceiver to model radios for the radio simulated envir-
onment.

Description: The most commonly set radio uses two components:

l Transceiver

l RCUbasic

The Radio Control Unit (RCU) basic requires a commplan fill to access radio modes, wave-
forms, default settings, etc. If the control inputs are set from an external source (e.g., host con-
trol), they override the default values in the fill. For example, RCUbasic has a loaded fill and
is using Net 1, which defaults the frequency of the radio to 101 megahertz (MHz). This
information is sent to the paired Transceiver that shares the same Transceiver ID as RCU-
basic. For example, to use the net default with a new frequency of 105 MHz, set the RCU-
basic component's frequency to 105 MHz. The new frequency overrides the net default, and
Transceiver sets its frequency to 105 MHz.

In general, settings that relate to how the radio appears on the network are in Transceiver,
and settings that controls the radio for simulation are placed in RCUbasic.

Table 282, "RCUbasic control inputs" on the facing page lists and describes RCUbasic con-
trol input variables:

Name Type Default
Value

Description

CryptoKey uint16 0 If two radios are encrypted, they must have
matching crypto keys to communicate.

CryptoSys uint16 0 Sets the radio's crypto type. Acceptable val-
ues include the following:
l 0: other
l 1: KY-28
l 2: KY-58
l 3: NSVE
l 4:WSVE
l 5: SINCGARS ICOM

CodecType uint16 0 When the radio mode is DIGITAL, this num-
ber must match the receiver to transmitter.

Frequency uint64 0 Current radio tune frequency in Hertz.

FreqHopHopSetWOD uint16 0 Identifies the set of frequencies used in hop-
ping pattern. Default of 0 = match all.

238 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

FreqHopLockOutId uint16 0 Identifies the set of frequencies excluded
from hopping pattern. Default of 0 = match
all.

FreqHopNetId uint16 0 Identifies the frequency-hopping net ID. Fre-
quency hopping radio must have non-zero
Net ID to be considered actively hopping.

FreqHopSyncTOD uint32 0 Identifies the frequency-hopping time of day.
A default of 0 = match all.

FreqHopSystem uint16 0 Not used. ASTi recommends setting of 0.

FreqHopTranSecKey uint16 0 Identifies the frequency-hopping trans-
mission security key that generates hopping
patterns. Default of 0 = match all.

NetIndicate uint32 1 Selects net from the commplan fill. Net
defines core radio parameters, including fre-
quency, Tx frequency, waveform, crypto,
and frequency hopping. Set net parameters
in the commplan.

TxFrequency uint64 0 Transmitter frequency of Transceiver in
Hz. Only use if Tx frequency differs from Rx
frequency.

TxPower float32 0.0 Transmit power for radio in Watts.

Table 282: RCUbasic control inputs

Table 283, "RCUbasic control outputs" below lists and describes RCUbasic control output
variables:

Name Type Default
Value

Description

FillName string <Edit> Reports fill contents. Typically not connected to
outputs.

NetIndicate uint32 0 Reports TransceiverId contents. Typically not
connected to output.

Table 283: RCUbasic control outputs

Copyright © 2025 Advanced Simulation Technology inc. 239

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 284, "RCUbasic internal parameters" below lists and describes RCUbasic internal para-
meter variables:

Name Type Default Value Description

Fill fill <Select> IDs the commplan fill to use with Transceiver.
To insert the commplan fill, double-click
Value. A radio needs a fill to operate.

TransceiverId id UNASSIGNED Tells RCUbasic which Transceiver to control.
The Transceiver's TransceiverIdmust match.

Table 284: RCUbasic internal parameters

15.9 Receiver
Summary: Receiver communicates with Transceiver to force receive capability.

Description: Receiver is an RCU in the Radio group. It communicates with Transceiver to
force Rx capability only. It's a subset of the features and controls in RCUbasic.

Receiver charges fewer credits than RCUbasic and other Radio Control Units (RCUs), but it
also provides less functionality. The component replicates guard receivers and navigational
aids, such as an automatic direction finder (ADF) receiver or a Tactical Air Navigation
(TACAN) receiver. For more information about RCUs and Transceiver, go to Section 15.8,
"RCUbasic" on page 238.

Table 285, "Receiver control inputs" on the facing page describes Receiver control input vari-
ables:

Name Type Default
Value

Description

CryptoKey uint16 0 If two radios use encryption, they must have
matching crypto keys for the crypto modes;
must match for proper radio tuning.

Frequency uint64 0 The current radio tune frequency in Hz.

FreqHopNetId uint16 0 Identifies the frequency-hopping network.

FreqHopSyncTOD uint32 0 Identifies the time of day used in frequency
hopping.

FreqHopTranSecKey uint16 0 Identifies the transmission security key used
to generate hopping patterns.

FreqHopHopSetWOD uint16 0 Identifies the set of frequencies used to gen-
erate hopping patterns.

240 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

FreqHopLockOutId uint16 0 Identifies the set of frequencies that are
excluded from hopping pattern.

Net uint32 1 Net defines the core radio features, including
frequency, Tx frequency, waveform, crypto,
and frequency hopping. Net parameters are
set in the Comm Plan.

CryptoSys uint16 0 Sets the radio's crypto type. Acceptable val-
ues include the following:
l 0: other
l 1: KY-28
l 2: KY-58
l 3: NSVE
l 4:WSVE
l 5: SINCGARS ICOM

Table 285: Receiver control inputs

Table 286, "Receiver internal parameters" below lists and describes Receiver internal para-
meter variables:

Name Type Default Value Description

Fill fill <SELECT> To insert the commplan fill, double-click in Value.

TransceiverId id UNASSIGNED TransceiverId tells the RCU which Transceiverit
should control.

Table 286: Receiver internal parameters

15.10 Relay
Summary: Relay links any radio pairs from a bank of eight radios.

Description: Relay connects up to eight Transceivers together to form radio relays. A radio
relay takes all received audio from a radio and retransmits from another radio. Relay allows
you to make up to four pairs of relays across eight radios. In the most basic case, link the
received audio from a transceiver to ReceiveAudio1 of Relay. RadioSelector1 sets which
radio receives the audio, where 2 = TransmitAudio2, 3 = TransmitAudio3, etc.

Copyright © 2025 Advanced Simulation Technology inc. 241

Studio Components Reference Guide (Rev. T, Ver. 0)

In the example below, Transceiver2 and Transceiver3 are a relay pair, and Transceiver1 and
Transceiver4 are also a pair. As in the real world, radios in Relay mode have different fre-
quencies.

Figure 46: Basic Relay model example

Figure 47: Relay host control

242 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Figure 48: Relay component

Table 287, "Relay audio inputs and outputs" below lists and describes Relay audio input and
output variables:

Name Type Default Value Description

Audio Inputs

ReceiveAudio1–
ReceiveAudio8

audio N/A The ReceiveAudio from the selected Transceiver
routed into Relay.

Audio Outputs

TransmitAudio
1–
TransmitAudio8

audio N/A A link to the transmit audio input of the selected
Transceiver. Audio is routed from the ReceiveAu-
dio lines based on the RadioSelectors.

Table 287: Relay audio inputs and outputs

Copyright © 2025 Advanced Simulation Technology inc. 243

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 288, "Relay control inputs" below lists and describes Relay control input variables:

Name Type Default
Value

Description

RadioSelector1 uint8 0 RadioSelector1 chooses which transmit audio
stream ReceiveAudio1 routes to. A value of 0
means ReceiveAudio1 does not relay to any other
radio.

RadioSelector2 uint8 0 RadioSelector2 chooses which transmit audio
stream ReceiveAudio2 routes to. A value of 0
means ReceiveAudio2 is not relayed to any other
radio.

RadioSelector3 uint8 0 RadioSelector3 chooses which transmit audio
stream ReceiveAudio3 routes to. A value of 0
means ReceiveAudio3 does not relay to any other
radio.

RadioSelector4 uint8 0 RadioSelector4 chooses which transmit audio
stream ReceiveAudio4 routes to. A value of 0
means ReceiveAudio4 does not relay to any other
radio.

RadioSelector5 uint8 0 RadioSelector5 chooses which transmit audio
stream ReceiveAudio5 routes to. A value of 0
means ReceiveAudio5 does not relay to any other
radio.

RadioSelector6 uint8 0 RadioSelector6 chooses which transmit audio
stream ReceiveAudio6 routes to. A value of 0
means ReceiveAudio6 does not relay to any other
radio.

RadioSelector7 uint8 0 RadioSelector7 chooses which transmit audio
stream ReceiveAudio7 routes to. A value of 0
means ReceiveAudio7 does not relay to any other
radio.

RadioSelector8 uint8 0 RadioSelector8 chooses which transmit audio
stream ReceiveAudio8 routes to. A value of 0
means ReceiveAudio8 does not relay to any other
radio.

Table 288: Relay control inputs

244 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

15.11 Satellite
Summary: Satellite is a simulated satellite that handles uplink/downlink relay of signals
transmitted from a simulated radio in SATCOM mode, including simulation of mode-depend-
ent delays.

Description: Satellite represents a simulated satellite and can be set to relay uplink signals
from radios set in SATCOM mode. Realistic simulation of Satellite parameters, including
delays based on SATCOM sub-modes, world position, uplink and downlink bands are
included. Add multiple Satellites to a model to simulate multiple, independent satellites.

SATCOM submodes include the following:

l 5k Dedicated

l 5k DASA

l 5k DAMA

l 25k Dedicated

l 25k DC DASA

l 25k AC DAMA

l 25k DC DAMA

Satellite can also include propagation effects, such as smooth Earth occulting and terrain
occulting through use of a terrain server:

Uplink Downlink

Copyright © 2025 Advanced Simulation Technology inc. 245

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 289, "Satellite control inputs" on the facing page lists and describes Satellite control
input variables:

Name Type Default
Value

Description

UplinkFrequency uint64 0 Base frequency of Satellite uplink frequency
band in Hertz.

DownlinkFrequency uint64 0 Base frequency of Satellite downlink fre-
quency band in Hertz.

Passband uint64 0 Defines the frequency range of Satellite uplink
and downlink bands in hertz.

TxPower float32 1.0 The transmit power for Satellite downlink
transmitter in Watts.

Channels uint32 1 Number of simultaneous channels that can be
supported by Satellite.

FixedDelay uint32 0 Overrides mode-based delays and forces a
fixed delay value. Specified in milliseconds.

Delay5k uint32 0 Delay applied between when Satellite
receives an uplink signal, and it transmits the
downlink signal when in SATCOM5kmode.
Specified in milliseconds.

Delay5kDASA uint32 0 Delay applied between when Satellite
receives an uplink signal and when it transmits
the downlink signal when in SATCOM5kDASA
mode. Specified in milliseconds.

Delay5kDAMA uint32 0 Delay applied from when Satellite receives an
uplink signal and when it transmits the down-
link signal when in SATCOM5kDAMAmode.
Specified in milliseconds.

Delay25k uint32 0 Delay applied from when Satellite receives an
uplink signal and when it transmits the down-
link signal when in SATCOM25kmode. Spe-
cified in milliseconds.

Delay25kDCDASA uint32 0 Delay applied from when Satellite receives an
uplink signal and when it transmits the down-
link signal when in SATCOM25kDCDASA
mode. Specified in milliseconds.

246 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Delay25kACDAMA uint32 0 Delay applied from when the Satellite
receives an uplink signal and when it transmits
the downlink signal when in
SATCOM25kACDAMAmode. Specified in mil-
liseconds.

Delay25kDCDAMA uint32 0 Delay applied from when Satellite receives an
uplink signal and when it transmits the down-
link signal when in SATCOM25kDCDAMA
mode. Specified in milliseconds.

DomainNameIn string N/A Allows a host platform to set the DomainName
string remotely. This input is typically used in
conjunction with the Control > NumToString.

ProtocolIdIn string N/A Allows a host platform to set the ProtocolId
string remotely. This input is typically used in
conjunction with NumToString.

ForceCenter
OfEarth

Boolean FALSE Amanual override that places Satellite at 0, 0,
0 geocentric world position. This variable dis-
ables all propagation effects on transmit or
receive.

TerrainEnable Boolean FALSE When TRUE, allows input terrain server to pro-
cess line-of-sight transmissions.

Table 289: Satellite control inputs

Copyright © 2025 Advanced Simulation Technology inc. 247

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 290, "Satellite internal parameters" on the facing page lists and describes Satellite
internal parameter variables:

Name Type Default Value Description

SatelliteName string <Edit> Name of the component.

DomainName string <Edit> The DomainNameis part of the ASTiNet prop-
erty set and defines a common com-
munications environment. All radios in the
same domain can communicate. Radios in sep-
arate domains can never communicate. It is
analogous to a Distributed Interactive Sim-
ulation (DIS) exercise ID or a high-level archi-
tecture (HLA) Federation name. When defined
as an ASCII string Transceiver is an ASTiNet
radio. When that string matches a defined DIS
domain at the project level, it maps the domain
name to a DIS exercise ID.

To define a DIS exercise ID, enter DIS:N,
where N=1–255. For example, “DIS:1” puts the
radio in DIS exercise ID #1.

In Satellite, this action specifies the domain
where the satellite are active. Leaving this vari-
able blank causes it to act as a wild card. Satel-
lite is active in all domains.

248 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

ProtocolID string <Edit> Optional configuration for when you have a
non-ASTiNet radios. DIS is currently the only
supported protocol. The syntax for setting up a
DIS radio is the string format of DIS:site.applic-
ation.entity.radio, DIS:entity.radio, or
DIS:radio. If the site and application are
excluded from the string, the radio environment
assigns the default site and app from the DIS
file in Domain Editor. If entity is excluded, the
radio environment assigns a random/unique
number entity ID for the radio. This variable
can also be set in the radio helper. It must be
unique within the DIS network.

For example: DIS:100.100.1.1 sets:

Site=100, App=100, Entity=1, and Radio=1

In Satellite, ProtocolID affects the DIS ID of
the temporary transmitters setup to retransmit
the signal.

WorldPositionBus id UNASSIGNED Optional configuration that allows you to assign
a Satellite to a world position bus. If undefined,
Satellite defaults to X,Y,Z = 0,0,0. Altern-
atively, if an entity exists on the DIS network
that matches the Site.Application. Entity ID
within Satellite ProtocolID, Satellite inherits
that entity’s world position information. When a
bus name is defined, Satellite is located
(X,Y,Z) based on Platform, which is tied to the
same bus name used in conjunction with Plat-
form/GeocentricWorldPosition orGeo-
deticWorldPosition.

Table 290: Satellite internal parameters

15.12 Transceiver
Summary: Transceiver works in conjunction with Radio Control Unit (RCU) to create a
simulated radio.

Description: Transceiver models radio transmission and radio reception. Used in con-
junction with RCU, Intercom Control Unit (ICU), Receiver, or Transmitter, it forms the
basis of a Radio, Network Intercom, Receiver, or Transmitter respectively.

Copyright © 2025 Advanced Simulation Technology inc. 249

Studio Components Reference Guide (Rev. T, Ver. 0)

Some of the core features of the Transceiver include the following:

l Host control of core radio parameters

l Modulation matching, which includes amplitude modulation (AM), frequency mod-
ulation (FM), upper sideband (USB), lower sideband (LSB), etc.

l Radio Frequency (RF) propagation modeling based on world position, frequency, etc.

l Crypto state and sound modeling

l Frequency-hopping modeling

l Jamming support

l Squelch control

l Terrain support, in conjunction with an external terrain server

l Antenna Gain, Cable Loss, RXTuneTone and other advanced radio parameters

l Audio and Tactical Data Link support

l Multiprotocol support including local, ASTiNet, Distributed Interactive Simulation
(DIS) and high-level architecture (HLA)

Transceiver provides a generic, high-level radio simulation, which includes transmit and
receive operations, frequency-tuning effects, AM and FM modulation modes, signal-strength
variation due to range, transmit power, antenna and receiver gain, RF and internal noise, and
propagation path loss, sidetone signal return, and support for crypto and frequency hop beha-
viors, and more.

At the simplest level, Transceiver provides a simulation of the interface between the signal
and data flow within a radio, and the simulated radio frequency environment. Just as in the
real world, the signals passed between a real Transceiver and the remainder of the radio sub-
system provide information to and from Transceiver, and include the transmit and receive
audio signals (i.e., voice or tones), transmit and receive data message signals, including the
following:

l Link-16

l Interval data messages (IDM)

l Aircraft Communications Addressing and Reporting System (ACARS)

l Control signals that determine the behavior of the Transceiver (e.g., tuned frequency,
modulation mode, bandwidth)

250 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Transceiver has two bidirectional information interfaces and a single, one-way control inter-
face. One of the bidirectional information interfaces operates internally within the simulated
radio and/or vehicle base-band. The other bidirectional interface operates in the RF bands and
provides wireless transmission and reception. The control interface determines the translation
between the base-band and RF environments.

Transceiver must be used with an RCU object to form an operational radio RCU provides
the greater portion of the control interface data values. Applicable RCU subclass objects that
may be used with the Transceiver include the following components:

l RCU

l ICU

l Transmitter

l Receiver

The type of RCU determines the available Transceiver's capabilities. For example, selection
of a receiver RCU object limits the Transceiver's operation to the reception of RF-originated
signals.

The Transceiver can implement various fidelity levels of RF modeling from simple fre-
quency matching to full-fidelity simulation of specific radio types, including propagation and
ranging, bandwidth overlap, antenna gain, etc. Ranging behavior requires that each radio has
a world position describing the location of the radio on or above the Earth’s surface. If a
radio is set to operate using the DIS networking protocol, another option available is to attach
a radio to an externally simulated entity using Entity Attach. Once attached, the Transceiver
position is a slave to the selected entity, and all range calculations are based on the supplied
entity position.

The received signal strength is computed for all in-tune radios based on the power of the
transmitter, the antenna gains of Transmitter and Receiver, and the relative world positions.
If the terrain interface is installed, the gain factor for the in-tune radios is factored in the cal-
culator. If frequency hopping or encryption is enabled, Transceiver compares the parameters
of the Transmitter and Receiver to see if the audio is received.

Note: In frequency-hopping mode, frequency is ignored. The frequency is implied in the
selected Net ID hopset.

If multiple Transmitters are broadcasting on the same frequency, Transceiver typically does
one of two things. For AM signals, the received RF power is combined, and the received
audio is a sum of the transmitted signals in proportion to their signal strength. For FM sig-
nals, only the strongest received signal is included.

Copyright © 2025 Advanced Simulation Technology inc. 251

Studio Components Reference Guide (Rev. T, Ver. 0)

Once the received power is determined, the RF signal-to-noise (SNR) is calculated. The noise
level is determined by thermal noise, internal radio noise, and other parameters, which are set
in Transceiver. The RF SNR is then compared to the squelch level. If the ratio is less than
the squelch level, the signal is not received. Setting the squelch to zero disables the squelch.

After determining that the signal is received, the signal power and noise power are affected
by automatic gain control (AGC). Additionally, when squelch is off, the maximum AGC
determines the background noise when Transceiver doesn't receive a signal. The received
audio is routed out of the component locally and/or onto the IntercomBusService, where an
operator can hear it, typically through a communications panel component.

Transceiver can transmit as well as receive. When the radio transmits, the reception is cut
off, assuming half-duplex operation.

To support crypto, simulation radios use a library of crypto tones (i.e., sound files) with each
Transceiver. This library greatly simplifies the encrypted radio simulation by automatically
playing tones (e.g., preamble, postamble, or mismatch tone) at the appropriate times during a
secure radio transmission or reception.

Radio jamming occurs when a receiving radio operating in FM is blocked by a strong trans-
mission, most often used a mismatched modulation mode (e.g., Pulse), causing any desired
signal to be masked by the unwanted jammer. This capability is supported in Transceiver.

Receiver automatically determines if it is jammed. The audio associated with Receiver being
jammed is implemented through Transceiver using the sound file library system to organize
the jamming sounds. Each Transceiver can point at a particular jamming library and jam-
ming group. The sound file indexes populated within the sound library or group map to pos-
sible modes of Receiver.

The receiving radio automatically chooses which sound file to play when it is jammed. The
sound file (i.e., index) chosen is determined by the RECEIVER mode. Table 291, "Receiver
mode sounds" below specifies which sound index is played based on the mode:

Receiver Mode Sound File Index Played
FM 2

AM 3

SATCOM 4

CW 8

USB 9

LSB 10

Pulse 11

SSBF 13

Table 291: Receiver mode sounds

252 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

If the terrain interface is set, the radio environment determines in-tune Transmitter and
Receiver pairs and generates data packets containing Transmitter Receiver world positions.
The host computing system and a suitable terrain database may process these packets to
determine accurate line-of-sight terrain obscuration checks in addition to the range cal-
culations. Without the terrain package, ranging is limited by a calculation based upon a
WGS-84 model of the Earth’s curvature.

Note: For frequencies between 1 and 100,000, no background noise or signal attenuation
effects are simulated. These frequencies provide a clear channel of communication, regard-
less of transmission power, world position, etc. The frequencies are typically reserved for
network intercom communications (i.e., INTERCOM mode).

Note: Transceiver defaults to a world position of geocentric X, Y, Z = 0, 0, 0 (i.e., the center
of the Earth). At this position, a radio receives any radios using the same frequency without
any signal loss or occulting. This feature can model a radio that monitors a particular radio
band, without regard to position or transmit power.

Table 292, "Transceiver audio inputs" below lists and describes Transceiver audio input vari-
ables:

Name Type Default
Value

Description

ExternalNoise audio N/A Attach an input signal to replace the internal
NoiseSource. Overrides the white noise generator if
a signal is attached and active.

RxTuneTone audio N/A Local audio connection mixed into the receive audio
path of the radio.

TxAudio audio N/A Local audio connection to Transceiver transmit
audio stream.

Table 292: Transceiver audio inputs

Table 293, "Transceiver audio outputs" below lists and describes Transceiver audio output
variables:

Name Type Default
Value

Description

RxAudio audio N/A The receiving audio Transceiver picks up from in-
tune transmitting radios).

TxCryptoAudio audio N/A The audio the cryptotone player generates for trans-
mit states only.

Table 293: Transceiver audio outputs

Copyright © 2025 Advanced Simulation Technology inc. 253

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 294, "Transceiver control inputs" on page 256 lists and describes Transceiver control
input variables:

Name Type Default
Value

Description

AntennaGain float32 1.0 The linear antenna gain applied to the radio
receive signal.

Cableloss float32 1.0 The loss factor representing the antenna
cable; a value of 1.0 represents no loss.

BFOGain float32 1.0 The gain associated with the beat frequency
oscillator (BFO) audio.

BFOFrequency float32 0.0 BFO frequency in Transceiver. The BFO has
a tone strength that is proportional to the
received carrier strength, generally used for
detecting the Morse code keying present on a
continuous wave beacon.

CryptoGroup playsound_
group

1 Allows for host control between different
crypto groups in the sound library. For
example, change from a KY-28 to a KY-58.

CryptoGain float32 1.0 The gain level of the crypto sound.

CryptoEnable Boolean TRUE Disables crypto even when crypto parameters
are enabled in the Transceiver's associated
RCU.

CryptoOnly Boolean FALSE When TRUE and if the radio is in crypto mode
(i.e., system and key are both not zero), the
radio does not receive clear transmissions
and or play RX_Clear Playsound. If TRUE and
the radio is in CLEARmode (i.e., system or
key are 0), the radio receives clear trans-
missions.

DomainNameIn string N/A Allows a host platform to set the DomainName
string remotely. This input is typically used
with NumToString.

ForceCenterOfEarth Boolean FALSE Amanual override places Transceiver at 0, 0,
0 geocentric world position. When TRUE, the
radio is located at the center of the Earth (0, 0,
0). Set to the center of the Earth to disable
propagation effects.

254 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

InterferenceLibrary playsound_
library

<Select> The Playsound library with Playsound that
plays when the radio senses a jammed. For
more information about jamming, go to Sec-
tion 15.12, "Transceiver" on page 249.

InterferenceGroup playsound_
group

1 The Playsound group with Playsound that
plays when the radio senses a jam.

InterferenceGain float32 1.0 The gain applied to jamming audio.

NoiseGain float32 0.1 Gain associated with the internal Transceiver
noise.

PowerIn Boolean TRUE Enable or disable power for Transceiver. If
not connected to From, the default value is
TRUE.

ProtocolId string N/A Allows a host platform to set the ProtocolId
string remotely. This input is typically works
with NumToString.

ReceiveGain float32 1.0 The gain applied to the received audio. Equi-
valent to a volume knob.

RxALCEnable Boolean FALSE Enables auto-level control (ALC) on Trans-
ceiver's received signal. Loud signals reduce
in volume and quiet signals boost. Other
ASTi-networked radios receive at a consistent
volume, regardless of which system the radios
are using.

RxDataThreshold float32 0.200 Equivalent to a squelch level but for data
reception.

RxEnable Boolean TRUE If TRUE, then receive is enabled for the
Transceiver.

SideFxEnable Boolean TRUE If TRUE, then any applied voicing effects are
heard in the sidetone returned from this Trans-
ceiver. Enable voicing effects in the com-
mplan waveform.

Copyright © 2025 Advanced Simulation Technology inc. 255

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

SquelchLevel float32 0.200 When the received signal-to-noise ratio (SNR)
is less than the squelch value, the gain is 0,
suppressing the background noise. To disable
the squelch set the level to zero. To calculate
the squelch level in dB, multiply the squelch
result displayed in the component by 20. This
is useful when you want to compare the
squelch level to signal level in dB.

SquelchTail uint32 75 The duration of the squelch tail in mil-
liseconds.

TransmitAudioGain float32 1.0 Gain applied to the Radio Bridge's transmit sig-
nal before it enters the radio environment.

TxALCEnable Boolean FALSE Enables the ALC on the Transceiver'strans-
mit signal. This behavior attempts to maintain
a consistent and specified audio volume, redu-
cing volume in loud signals and boosting the
volume for quiet signals. As a result, other
ASTi-networked radio systems hear this radio
at a consistent volume.

TxEnable Boolean TRUE If TRUE, then transmit is enabled for Trans-
ceiver.

Table 294: Transceiver control inputs

Table 295, "Transceiver control outputs" on page 258 lists and describes Transceiver control
output variables:

Name Type Default
Value

Description

Jammed Boolean FALSE Indicates if Transceiver is jammed.

Range float32 0.0 The distance to the Transmitter cur-
rently being received from in meters.

RxActive Boolean FALSE Indicates if Transceiver is receiving.

RxAudioActive Boolean FALSE When TRUE, the Transceiver receive
output is non-zero. TRUE if squelch is
broken or audio is received.

RxCrypt Boolean FALSE TRUE when the radio is actively
receiving a secure transmission.

256 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

RxCryptoSoundIdx uint16 0 When no Rx_Preamble sound file is
playing, this number is 0. When any
Rx_Preamble is playing, this number
reflects the sound index as configured
in the sound library. This variable
appears only in Full View.

RxDataDropped int32 0 The number of data packets that the
radio detected coming from an in-tune
transmitting radio when
RxDataThresholdMet is FALSE and is
not forwarded to the local host.

RxDataForwarded int32 0 The number of data packets suc-
cessfully received from an in-tune,
transmitting radio while
RxDataThresholdMetis TRUE and is
forwarded to the local host.

RxDataThresholdMet Boolean FALSE TRUE when Receiver is in tune with a
Transmitter and the SNR in dB of the
path from that Transmitter to the
Receiver is at or above the threshold
set using the RxDataThreshold value.

RxFreq uint64 0 The Transceiver receive frequency.

RxPathFactor float32 0.0 The pathloss factor associated with
the transmission path; could come
from an external terrain server or path-
loss server, internal calculations, or
path factor. A value of 1.0 represents
no loss.

RxPower float32 -270.0 Indicates the receive power in dBm.

RxTxLocationX float64 0.0 When the radio receives, it populates
the transmitters location. This is the X
position in a geocentric coordinate sys-
tem of the radio that the Transceiver
is currently receiving from.

Copyright © 2025 Advanced Simulation Technology inc. 257

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

RxTxLocationY float64 0.0 When the radio receives, it populates
the transmitters location. This is the Y
position in a geocentric coordinate sys-
tem of the radio that the Transceiver
is currently receiving from.

RxTxLocationZ float64 0.0 When the radio receives, it populates
the Transmitter'slocation. This is the
Z position in a geocentric coordinate
system of the radio that Transceiver
is currently receiving from.

RxVoiceTransmissionActive Boolean FALSE When TRUE, Transceiver is receiv-
ing audio from another radio.

SNR float32 -270.0 The signal-to-noise ratio of the
received signal.

TxActive Boolean FALSE Indicates whether Transceiver is
transmitting.

TxVoice Boolean FALSE Indicates when Transceiver is trans-
mitting audio.

TxTDL Boolean FALSE Indicates when Transceiver is trans-
mitting Tactical Data Link (TDL).

TxCrypt Boolean FALSE Indicates when Transceiver is in
crypto mode and actively transmitting.

TxCryptoSoundIdx uint16 0 When no Tx_Preamble sound file is
playing, this number is 0. When a Tx_
Preamble sound file is playing, this
number reflects the sound index as
configured in the sound library. This
variable only appears in Full View.

TxFreq uint64 0 Indicates Transceiver transmit fre-
quency.

Table 295: Transceiver control outputs

258 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 296, "Transceiver internal parameters" on page 261 lists and describes Transceiver
internal parameter variables:

Name Type Default Value Description

DomainName string <Edit> (Required) Part of the ASTiNet property set
that defines a common comms environment.
All Transceivers in the same domain can
talk. It's similar to a DIS Exercise ID or an
HLA Federation name. When an ASCII
string, Transceiver is natively an ASTiNet
radio. When that string matches a defined
DIS domain in a project, it maps the
DomainName to a DIS exercise ID.

To define a DIS exercise ID, enter DIS:N,
where N=1–255. For example, DIS:1 puts
Transceiver in DIS Exercise ID 1. Ensure
another DIS domain is not already using the
exercise ID.

PowerBus id UNASSIGNED Connects to PowerService to receive power
instead of using a control.

ProtocolId string <Edit> Turns a radio into a DIS radio by setting the
DIS identifiers (e.g., Host ID, Radio ID).
Marking Field considers the radio "local"
and unpublished on the network.
l DIS:#.#.#.#: sets the Site, Application,
Entity, and Radio IDs

l DIS:#.#: sets the Entity and Radio ID
l DIS:#: sets the Radio ID
l DIS: sets all four IDs automatically
l LCL: sets the radio as local and not pub-
lished on the network.

Blank identifiers generate automatically. Site
and Application ID are the last two octets of
the DIS IP address. Entity and Radio IDs are
random. Append the above examples with a
colon andMarking Field.

For example, DIS:100.3:RedForce1 sets
Entity ID to 100, Radio ID to 3, andMark-
ing Field to RedForce1. The IP address
sets Site ID and Application ID.

Copyright © 2025 Advanced Simulation Technology inc. 259

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

RadioBus id UNASSIGNED Assigns Transceiver to Inter-
comBusService. This variable is most com-
monly used with CommPanel, which also
uses IntercomBusService. Inter-
comBusServiceallows components con-
nected to the bus to pass around input
audio, sidetone audio, and output audio.

RadioName string <Edit> The radio name that describes what Trans-
ceiver is modeling (e.g., UHF_Radio1).

Important: This parameter is required.

RxState CryptoStateRx RxCryptoOff This reports the current crypto receive state.
Possible states include:
l RxCryptoOff
l RxCryptoPreamble1
l RxCryptoPreamble2
l RxCryptoPostAmble
l RxCryptoClear
l RxCryptoMatch
l RxCryptoMismatch
l RxCryptoMismatchPreamble

Each one corresponds to a different sound
file played from the crypto sound library.
Crypto receive states include the following:
l 0 // play no sound
l 1 // play match preamble 1
l 2 // play match preamble 2
l 3 // play match post amble
l 4 // play clear tone
l 5 // play match tone
l 6 // play mismatch tone
l 7 // play mismatch tone

TransceiverId id UNASSIGNED The connection to the radio control service.
This bus defines the connection between the
Transceiver and its RCU/ICU.

Important: This parameter is required.

260 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default Value Description

TxState CryptoStateTx TxCryptoOff Reports the current crypto transmit state.
Possible states include the following:
l TxCryptoOff
l TxCryptoPreamble1
l TxCryptoPreamble2
l TxCryptoPostAmble
l TxCryptoClear
l TxCryptoCrypt

Each state corresponds to a different sound
file in the crypto sound library. Crypto trans-
mit states include following:
l 0 // play no sound
l 11 // play crypto preamble 1
l 12 // play crypto preamble 2
l 13 // play crypto post amble
l 14 // play clear tone
l 15 // play crypto tone

WorldPositionBus id UNASSIGNED (Optional) Assigns Transceiver to a world
position bus. If undefined, Transceiver
defaults to X,Y,Z = 0,0,0. Alternatively if an
entity exists on the DIS network that
matches Site.App.Entity ID within the Pro-
tocolId variable of Transceiver, Trans-
ceiver inherits that entity’s world position
information. When a bus name is defined,
Transceiver is located (X,Y,Z) based on
Platform, which is tied to the same bus
name used with Platform/Geo-
centricWorldPosition or Platform/Geo-
deticWorldPosition.

Table 296: Transceiver internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 261

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 297, "Transceiver internal display variables" below lists and describes Transceiver
internal display variables:

Name Type Default
Value

Description

Mode TunerMode None Displays the current Transceiver tuner mode (e.g.,
AM, FM, USB, LSB, etc.).

PowerState Boolean TRUE Displays the power state of the Transceiver.

RxFrequency uint64 0 Displays the current Transceiver receiver fre-
quency.

TxFrequency uint64 0 Displays the current Transceiver transmitter fre-
quency.

Table 297: Transceiver internal display variables

15.13 Transmitter
Summary: Transmitter creates a transmit-only radio.

Description: Transmitter is a Radio Control Unit (RCU) included in the Radio group. It
communicates with Transceiver, forcing transmit capability only. It is a subset of the fea-
tures and controls located in RCUbasic.

The benefit of using Transmitter over RCUbasic or other all-purpose RCUs is that it
charges a reduced number of credits for the reduced functionality. As a result, the component
is useful for replicating navigational aids, such as very high frequency (VHF) Omni-
directional range (VOR) or nondirectional beacon (NDB) Transmitters.

For more information about using the RCU and Transceiver, go to Section 15.8, "RCU-
basic" on page 238.

Table 298, "Transmitter control inputs" on the facing page lists and describes Transmitter
control input variables:

Name Type Default
Value

Description

CryptoKey uint16 0 If two radios are using encryption then they
must have matching cryptokeys for the
crypto modes. This variable must match for
proper radio tuning.

FreqHopNetID uint16 0 Identifies the frequency-hopping net ID. A
frequency-hopping radio must have a non-
zero net ID to actively hop.

262 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

FreqHopSyncTOD uint32 0 Identifies the time of day used in frequency
hopping.

FreqHopTranSecKey uint16 0 Identifies the transmission security key used
to generate hopping patterns.

FreqHopHopSetWOD uint16 0 Identifies the set of frequencies used in hop-
ping patterns.

FreqHopLockOutId uint16 0 Identifies the set of frequencies excluded
from hopping patterns.

Frequency uint64 0 The current transmitter tune frequency in Hz.

Net uint32 1 Defines core radio features, including the fol-
lowing:
l Frequency
l Transmit frequency
l Waveform
l Crypto
l Frequency hopping

Net parameters in commplan.

TxPower float32 1.0 Sets the transmit power for the
Transmitter.

Table 298: Transmitter control inputs

Table 299, "Transmitter internal parameters" below lists and describes Transmitter internal
parameter variables:

Name Type Default Value Description

Fill fill <Select> Insert the fill created in commplan by double-click-
ing in Value.

TransceiverID id UNASSIGNED Tells Transmitter which Transceiver it should con-
trol.

Table 299: Transmitter internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 263

Studio Components Reference Guide (Rev. T, Ver. 0)

15.14 VORTAC_Controller
Summary: VORTAC_Controller is designed to control embedded identifier tone elements
to simulate very high frequency (VHF) omnidirectional range (VOR) and Tactical Air Nav-
igation (TACAN) radios.

Description: VORTAC_Controller handles the timing of the VOR and TACAN tones to pre-
vent overlap. Seven components are needed to implement a complete VORTAC simulation in
a model. The TACAN and VOR radios each consist of a Transceiver, RCU, and
MorseKeyer. BothMorseKeyers are driven by one VORTAC_Controller. VORTAC_Con-
troller connects to Enable of VOR and TACAN MorseKeyers to keep proper timing of the
Morse code transmission.

MorseKeyer reports busy to VORTAC_Controller to ensure accurate timing of the Morse
code transmissions.MorseKeyer's Busy variable must be connected to VOR_Busy and
TACAN_Busy in VORTAC_Controller.

Note: In some versions of Studio, VOR_Busy and TACAN_Busy are only visible in Full
View.

Figure 49, "VORTAC_Controller data flow" below shows the VORTAC_Controller's data
flow:

VORTAC_Controller

TAC_Tx

RCU &

Transceiver

VOR_Tx

RCU &

Transceiver

Morse Tones

Busy

Ident, Intervals, Wordrate, Enables

VOR_MorseKeyer TAC_MorseKeyer

Figure 49: VORTAC_Controller data flow

264 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 300, "VORTAC_Controller control inputs" below lists and describes VORTAC_Con-
troller control input variables:

Name Type Default
Value

Description

Enable Boolean TRUE When TRUE, VORTAC_Controller is enabled.

Ident ident N/A The ASCII characters that drive theMorseKeyer.
Ident is a special variable type defined as ASCII
characters concatenated together. HostInmust
drive this parameter.

Interval uint16 1 Used to set the delay between words. Units are in
seconds.

TACAN_Busy Boolean TRUE Connects to VORMorseKeyer busy to be
informed when the keyer is keying.

VOR_Busy Boolean TRUE Connects to VORMorseKeyer busy to be
informed when the keyer is keying.

VOR_Count uint16 1 Number of keyed identifiers to skip before keying
TACAN identifier. VOR and TACAN identifier tones
are mutually exclusive.

Wordrate uint8 1 Determines rate at which the word is played. Units
are in dots per second. The faster the rate, the
higher the number.

Table 300: VORTAC_Controller control inputs

Table 301, "VORTAC_Controller control outputs" below lists and describes VORTAC_Con-
troller control output variables:

Name Type Default
Value

Description

IdentOut ident N/A Drives VOR and TACANMorseKeyer identifiers.

IntervalOut uint16 1 Drives VOR and TACANMorseKeyer intervals.

TACAN_Enable Boolean TRUE Connects to TACANMorseKeyer enable.

VOR_Enable Boolean FALSE Connects to VORMorseKeyer enable.

WordrateOut uint8 1 Drives VOR and TACANMorseKeyer word rates.

Table 301: VORTAC_Controller control outputs

Copyright © 2025 Advanced Simulation Technology inc. 265

Studio Components Reference Guide (Rev. T, Ver. 0)

16.0 Speech
The following sections describe the functionality and variables SpeechFeed and Tex-
tToSpeech.

16.1 SpeechFeed
Summary: Streams audio into the speech recognition engine.

Description: This component links an audio stream containing an operator’s speech to the
SpeechFeed to perform speech recognition on the audio. Once a stream ID is created and
selected, the audio is fed into the speech recognition engine and processed according to the
speech recognition configuration and grammars in the project’s SR Plans folder. To set up
speech recognition streams and grammars, go to the Studio Technical User Guide.

Table 302, "SpeechFeed audio input" below describes the SpeechFeed audio input:

Name Type Default
Value

Description

AudioIn audio N/A The audio stream directed to the speech recognition
engine.

Table 302: SpeechFeed audio input

Table 303, "SpeechFeed internal parameter" below describes the SpeechFeed internal para-
meter:

Name Type Default Value Description

StreamID id UNASSIGNED Name or identifier given to the speech recognition
stream. Double-click UNASSIGNED to open the
speech service window, and select New Bus to
add a speech recognition stream. Select Set Value
to set the stream in SpeechFeed.

Table 303: SpeechFeed internal parameter

16.2 TextToSpeech
Summary: TextToSpeech attaches to the ID of the specified stream and outputs the audio.

Description: TextToSpeech selects up to four streams, or however many your license
allows. The gain is applied to the selected stream, and the audio routes out of the component.

266 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 304, "TextToSpeech audio output" below lists and describes the TextToSpeech audio
output variable:

Name Type Default
Value

Description

AudioOut audio N/A The audio stream out signal.

Table 304: TextToSpeech audio output

Table 305, "TextToSpeech control outputs" below lists and describes TextToSpeech control
output variables:

Name Type Default
Value

Description

Gain float32 0.0 The strength of volume applied to the audio out sig-
nal.

ActivePlaying Boolean FALSE When TRUE, TextToSpeech is active.

Table 305: TextToSpeech control outputs

Table 306, "TextToSpeech internal parameter" below lists and describes the TextToSpeech
internal parameter variable:

Name Type Default
Value

Description

StreamID uint8 0 The ID of the audio streams accepts multiple audio
streams.

Table 306: TextToSpeech internal parameter

Copyright © 2025 Advanced Simulation Technology inc. 267

Studio Components Reference Guide (Rev. T, Ver. 0)

17.0 Remote Control
The following section describes URC-200's remote control capabilities.

17.1 URC-200
Summary: URC-200 interfaces with a single URC-200 live radio through an ACE-RIU chan-
nel.

Description: URC-200 provides a low-level interface to an URC-200 radio through an ACE-
RIU serial port. The interface presented in the data viewer is similar to a combination
Radio/RCU + Radio/Transceiver data viewer. The component contains control and status
sections.

Control accepts user input and drives the radio settings when applicable. Radio items in con-
trol are generally prefixed with an RCU string, as in RCU_Preset. Items in status do not
have a prefix string, as in Preset.

If the live radio fails to respond to a query for a specific status item (e.g., a query the current
preset), URC-200 displays an error indicator (e.g., -1 or “Unavailable”).

Input to the items in control are naively checked for validity. For example, URC-200 does
not know which frequency ranges are valid during live radio operation. On the contrary,
URC-200 assumes that you completely understand the constraints on parameters for different
modes of operation. If you set an invalid input, Transceiver most likely returns a NAK,
which ErrorMask eventually flags as an error.

For a more intuitive interface, go to the Remote Control in the Telestra web interface. The
ideal interface to use with URC-200 is the Live Radio Remote Control page of the Telestra
web interface.

A Python API for interfacing with Remote Control in a model also exists; this API allows
programmatic control over live radio entities present in the system. Contact ASTi for more
information.

268 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 307, "URC-200 command list" below shows the complete list of commands sent to the
live radio RS232 serial interface from URC-200:

Command Name Command Code

Zap Z

Set Squelch $

Set Preset P

Set Frequency R

Set Transmit Frequency T

Set Modulation Mode M

Set Tx Modulation Mode N

Set Text Mode X

Store Preset Q

Set Power Level #

Set Beacon Mode *

Set Keypad Control +

Set Transmit Mode B

Set Receive Mode E

Synth Lock/Unlock ?01

Receive Sig Strength ?03

SW Version ?08

Squelch Level Setting ?09

Current Preset Status ?10

Text Mode Status ?11

General Status ?11

General Mode Status ?12

Squelch Status ?13

Table 307: URC-200 command list

Note: For more information about URC-200 commands, go to the URC-200 operator
manual.

Copyright © 2025 Advanced Simulation Technology inc. 269

Studio Components Reference Guide (Rev. T, Ver. 0)

Table 308, "URC-200 control inputs" on page 272 shows URC-200 control input variables:

Name Type Default
Value

Description

ControlEnable Boolean TRUE When TRUE, remote control is enabled. Con-
trol messages are passed between the ACE-
RIU and the live radio.

LoadPreset Boolean TRUE When TRUE, URC-200 attempts to load pre-
sets but does not attempt to modify preset set-
tings:
l Frequency
l Tx Frequency
l Modulation Mode
l Tx Modulation Mode
l Power Level
l Text Mode

Consequently, the live radio's current setting
overrides Result.

StorePreset Boolean FALSE Triggers a Store Preset command on the
remote radio, saving the current preset’s state
to the radio’s internal memory. Go to the
radio’s operator manual for more information.
The save command sends when this variable
is first set to TRUE from a FALSE state.

ExternalPTT Boolean FALSE When TRUE, the control message exchange
between the ACE-RIU and live radio are hal-
ted. Keep TRUE when the live radio is trans-
mitting, so the radio is not simultaneously
transmitting and processing remote control
messages. This might cause excessive noise
on the transmitted signal.

RCU_Preset uint8 0 Sets the live radio preset to switch to. Valid pre-
sets are in the range of 0–9.

RCU_Freq uint64 0 Set the live radio frequency to tune to. Valid fre-
quencies vary depending on other factors; go
to the radio’s operator manual for more inform-
ation.

270 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

RCU_TxFreq uint64 0 Sets the live radio transmit frequency to tune
to. URC-200 cannot set the frequency and
transmit frequency together. If the two fre-
quencies must match, set both of them sep-
arately. Valid frequencies varies depending on
other factors; for more information, go to the
radio’s operator manual.

RCU_Squelch uint8 255 Sets the live radio squelch level. Values in the
range 0–255 are valid, with 255 being the
highest level.

RCU_PowerLevel uint8 0 Sets the live radio power level. Three settings
exist:
l 0: LO
l 1: MED
l 2: HI

Some settings are not possible; go to the
radio’s operator manual for information on set-
ting the power level.

RCU_TextMode uint8 0 Set the live radio text mode. Two settings
exist:
l 0: plain text (PT)
l 1: cipher text (CT)

RCU_ModMode uint8 0 Set the live radio to receive modulation mode.
Two settings exist:
l 0: AM
l 1: FM

Some settings are not possible in all cases; to
set the modulation mode, go to the radio’s
operator manual.

RCU_TxModMode uint8 0 Sets the live radio transmit modulation mode.
Two settings exist:
l 0: AM
l 1: FM

Some settings are not possible in all cases; to
set the modulation mode, go to the radio’s
operator manual.

Copyright © 2025 Advanced Simulation Technology inc. 271

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

RCU_Operating
Mode

uint8 0 Set the live radio’s operating mode. Four pos-
sible settings exist:
l 0: BYPASS
l 1: RECEIVE
l 2: TRANSMIT
l 3: BEACON

In BYPASS mode, URC-200 does not attempt
to control the operating mode. This is useful if
another entity is driving the live radio’s oper-
ating mode. For example, if you use a handset
with the radio while the remote control system
is connected, BYPASS. For more information
about the other three modes, go to the radio’s
operator manual.

Caution: TRANSMIT and BEACONmode
imply that Transceiver is actively keyed and
transmitting over the air. Ensure the radio has
antennae or equivalent load available.

Table 308: URC-200 control inputs

Table 309, "URC-200 control outputs" on page 275 lists and describes URC-200 control out-
put variables:

Name Type Default
Value

Description

Interface string N/A A helpful status message about the state of
the live radio remote control interface.
Example messages include the following:
l “Remote Control Off:” signifies that the
serial messaging is disabled for the inter-
face, most likely because ControlEnable is
FALSE.

l “Err: Bad device name/chan:” an invalid
ACE-RIU device or channel has been spe-
cified.

l “Err: check mask / log:” a control query
might be failing consistently; check the com-
ponent log. For more information, go to the
radio.log_level control.

l “Okay:” normal operation

272 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

SuccessMask uint64 0 A 64-bit mask for tracking the outcome of com-
mands to the live radio. To find specific com-
mands in the mask, go to Command List.
When a command succeeds, as determined
by receiving an ACK from the live radio and or
receiving a valid response, the bit for the com-
mand is 1. The bit is 0 when the command is
sent again.

ErrorMask uint64 0 A 64-bit mask that tracks the outcome of com-
mands to the live radio. To find specific com-
mands in the mask, go to 17.1, "URC-200" on
page 268.

Two conditions cause a command to fail:
l URC-200 receives an NAK from the live
radio.

l URC-200 receives a response that does
not comply with the protocol defined in the
General Dynamics URC-200 V2 Manual,
Document No. 99- P42304K).

When a command fails three times, the cor-
responding bit in ErrorMask is 1. If the same
command succeeds once, the bit resets to 0.

Option string None A string detailing the options installed on the
URC-200 transceiver. Valid strings include:
l None: no options installed.
l 30_90: the EBN-30 option is installed.
l 420: the EBN-400 option is installed.
l 30_90 & 420: both EBN-30 and EBN-400
options are installed.

l Unavailable: displayed on error.

SquelchStatus int8 0 The live radio's squelch status; two values are
valid:
l 0: the transceiver is squelched.
l 1: the transceiver's squelch has broken.
l -1: shown on error

Copyright © 2025 Advanced Simulation Technology inc. 273

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

Overtemp int8 0 The live radio’s overtemp status; two values
are valid:
l 0: temperature is okay
l 1: overtemp condition
l 1-: error

SynthLock int8 0 The live radio’s synthesizer lock status; two val-
ues are valid:
l 0: synthesizer is unlocked
l 1: synthesizer is locked
l -1: error

SWVersion string None The live radio’s software version; an “Unavail-
able” displays on error.

Preset int8 0 The live radio’s preset number; valid values
are in the range 0–9. A -1 value is shown on
error.

Freq int64 0 The live radio’s receive frequency. A -1 value
is shown on error.

TxFreq int64 0 The live radio’s transmit frequency. A -1 value
is shown on error.

Squelch int16 0 The live radio’s squelch level, valid values are
in the range of 0–255. A -1 value is shown on
error.

PowerLevel int8 0 The live radio’s power level. Valid values are:
l 0: LO
l 1: MED
l 2: HI
l -1: error

TextMode int8 0 The live radio’s text mode. Valid values are:
l 0: plain text (PT)
l 1: cipher text (CT)
l -1: error

ModMode int8 0 The live radio’s receive modulation mode.
Valid values are:
l 0: AM
l 1: FM
l -1: error

274 Copyright © 2025 Advanced Simulation Technology inc.

Studio Components Reference Guide (Rev. T, Ver. 0)

Name Type Default
Value

Description

TxModMode int8 0 The live radio’s transmit modulation mode.
Valid values are:
l 0: AM
l 1: FM
l -1: error

OperatingMode int8 0 The live radio’s operating mode. Valid values
are:
l 1: Receive
l 2: Transmit
l 3: Beacon
l -1: Error

RxSignalStrength int16 0 The live radio’s receive signal strength; valid
values are in the range 0–255. A -1 value is
shown on error.

Table 309: URC-200 control outputs

Table 310, "URC-200 internal parameters" below lists and describes URC-200 internal para-
meter variables:

Name Type Default
Value

Description

DeviceName deviceid <Select> Select the name of the ACE-RIU device.

DeviceChannel riu_channel None Select the ACE-RIU serial channel; serial chan-
nels can be either A or C.

RadioHandle string <Edit> Enter a useful handle to help identify this radio
object. The handle is useful when using the
Remote Control feature in the Telestra web
interface.

radio.log_level uint32 0 Set this parameter to affect how much logging
URC-200 outputs. Only a level of 1 is sup-
ported. Set this parameter to 0 if you are not
actively debugging URC-200, or the live radio
interface as spurious log output is produced.
Looking at the log is useful for identifying spe-
cific, unresponsive commands. This para-
meter is only accessible in Full View.

Table 310: URC-200 internal parameters

Copyright © 2025 Advanced Simulation Technology inc. 275

Studio Components Reference Guide (Rev. T, Ver. 0)

	1.0 Introduction
	1.1 Component viewer

	2.0 Audio components
	2.1 AmpMod
	2.2 AudioFeed
	2.3 AutoDRED
	2.3.1 Set up AutoDRED

	2.4 ComplexPlaysound
	2.5 Compressor
	2.6 Delay
	2.7 Demux
	2.8 Envelope
	2.9 Filter
	2.10 Lockout
	2.11 LevelDCapture
	2.12 MessageList
	2.13 Mixer
	2.14 NoiseSource
	2.15 PEnvelope
	2.16 PFilter
	2.17 Playsound
	2.18 Pulse
	2.19 PulseSequence
	2.20 PulseStep
	2.21 PulseStream
	2.22 RecordReplay
	2.23 SimpleMixer
	2.24 Sequencer
	2.25 StereoWavRecord
	2.26 VolumeControl
	2.27 Vox
	2.28 Wave

	3.0 AudioIO
	4.0 CommPanel
	4.1 CommPanel 4, 8, 16, 32
	4.2 CommPanel8Stereo
	4.3 StereoCommPanel

	5.0 Control
	5.1 BitToByte
	5.2 ByteToBit
	5.3 ByteMerger
	5.4 ByteSplitter
	5.5 Counter
	5.6 Delay
	5.7 Ident
	5.8 Incrementer
	5.9 IntCompare
	5.10 IntFlexTable
	5.11 IntTable
	5.12 Latch
	5.13 LogicTable
	5.14 MathFunction
	5.15 NumToString
	5.16 PassThrough

	6.0 Dynamics
	6.1 AGC
	6.2 CompressorLimiter
	6.3 Expander
	6.4 Gate

	7.0 Environmental Cue
	7.1 5BandFilter
	7.2 Engine
	7.3 EngineLevelD
	7.4 MultiFilter
	7.5 PropRotor
	7.6 SpeakerEQ
	7.6.1 Set up and run SpeakerEQ
	7.6.2 Tune SpeakerEQ

	7.7 VibrationCapture
	7.8 FilterBank
	7.9 FilterPlan

	8.0 Highway Service
	8.1 AuralCue
	8.2 AuralCuePosn
	8.3 SpeakerOutput

	9.0 Highway 3D Service
	9.1 Audio > Audio Feed
	9.2 Feeders > AuralCuePosn
	9.3 Feeders > Balancer1, 4, 8, 16
	9.4 AudioIO > Headphone3DOut
	9.5 AudioIO > HighwayOut
	9.6 AudioIO > SpeakerOut

	10.0 HRTFService
	10.1 HRTFOut4
	10.2 CommPanel8HRTF4

	11.0 IOInterfaces
	11.1 ACE_RIU_channel
	11.2 ACE_RIU_SerialByteOut
	11.3 ACUchannel
	11.4 ACU2channel
	11.5 ACU2_SerialByteOut
	11.6 AmpOut
	11.7 RTPStream
	11.7.1 Add an RTP Stream Map
	11.7.2 Assign the RTP Stream Map to a Telestra server

	11.8 SerialPort
	11.9 VoisusChannel

	12.0 Intercom
	12.1 IcomBalancer8
	12.2 IcomRx
	12.3 IcomTx
	12.4 Intercom_Bus_Power
	12.5 IntercomBusService

	13.0 Platform
	13.1 Detonation
	13.2 Entity
	13.3 Fire
	13.4 GeocentricWorldPosition
	13.5 GeodeticWorldPosition
	13.6 RelativePosition

	14.0 Host Control
	14.1 HostIn
	14.2 HostOut
	14.3 CellService
	14.3.1 CellIn
	14.3.2 CellOut

	15.0 Radio
	15.1 ColocatedBeacon
	15.2 GenericControl
	15.3 HfServer
	15.4 IntercomTransceiver
	15.5 ICU
	15.6 MarkerTone
	15.7 MorseKeyer
	15.8 RCUbasic
	15.9 Receiver
	15.10 Relay
	15.11 Satellite
	15.12 Transceiver
	15.13 Transmitter
	15.14 VORTAC_Controller

	16.0 Speech
	16.1 SpeechFeed
	16.2 TextToSpeech

	17.0 Remote Control
	17.1 URC-200

