
Construct API

Contents

Contents 1

1 Application Examples 2

2 Scenarios 2
2.1 Entities . 3
2.2 Interactions . 4
2.3 Sounds . 5
2.4 Radio Effects . 5
2.5 Language Models . 5

3 Construct Settings 7

4 Natural Language Parsers 7

5 Artificial Intelligence Markup Language (AIML) 7

6 Runtime Entities 7

7 Utterances 8

8 Streaming Status and Events 8
8.1 Entity Update . 10
8.2 Entity Delete . 10
8.3 Speech Event . 10
8.4 Speech-Finished Event . 10
8.5 Speech Recognition Event . 10

1

The Construct API allows developers to dynamically add sounds and voiced radio transmissions
to a simulation environment. HTTP clients are able to interact with Construct by making standard
HTTP requests to the Voisus server. Simulation entities, interactions, and sounds are represented
as JSON resources that can be manipulated by clients to create highly customized audio and radio
environments.

The Construct API is part of the larger Voisus Server API. Visit the Voisus Server API Docu-
mentation1 first for an overview of the API including information on REST, HTTP, and JSON.

Developers have access to all Construct functionality using the HTTP API:

• Create entities representing vehicles or human characters

• Attach to entities on the simulation network

• Trigger voice transmissions on simulated radios

• Script sequences of radio calls between entities

• Add realistic sound effects to radios

• Position entity speech in 3D game environments

• Create face-to-face conversations between game avatars and human players

• Synthesize variable speech using text-to-speech (TTS)

• Add automated speech recognition and intelligent behaviors to entities

1 Application Examples

• To create a radio interaction between two Entities, create two Entity resources and an Inter-
action resource that specifies the speech for each radio transmission.

• Trigger dynamic, on-the-fly radio calls from Entities by creating new Utterance resources.

• Add jet engine noise to radio calls from aircraft by setting the background attribute on an
Utterance.

• Receive speech recognition events from Entities using the streaming status feed.

2 Scenarios

Most Construct resources are contained within a Voisus Scenario. This includes resources for
Entities, Interactions, Sounds, Radio Effects, and Language Models. When the Scenario runs,
Entities are spawned and Interactions start running. Scenarios themselves are also created, deleted,
and run using the API. Consult the Voisus Server API Documentation2 for more information on
scenario management.

1voisus server api.pdf
2voisus server api.pdf

2

2.1 Entities

api/scenarios/scenario id/entities/
Construct Entities are used to add speech and radio capabilities to objects in simulation envi-

ronments. These Entities may correspond and be synchronized with Entities in external simulation
systems, or they may modeled solely by this Voisus Server.

Entities are created using either the web interface or this HTTP API. The Entity resource shown
below is stored in a Voisus Scenario and will cause a runtime Entity to be created and destroyed
each time the Scenario is installed and uninstalled, respectively. A separate section of the HTTP
API is available for interacting with the runtime representation of an Entity, including retrieving
speech recognition results and triggering text-to-speech transmissions.

When creating an Entity in a Scenario, there are a number of optional parameters and only
a small number of required parameters. Some parameters are links to other Scenario resources,
including net, domain, language model, and radio effects. In these cases, the parameter value
is the URI of the referenced resource.

To create an Entity with basic radio functionality, the net and domain properties must be set.
A TTS voice will be chosen randomly if one is not assigned.

The JSON below represents an Entity named “Broadsword 11”.

Variable Definition

domain Link to a Radio domain resource (controls DIS
exercise)

net Link to Net resource for to enable radio
communication

behavior Behavior that will control the entity (optional)
language model Language model for speech recognition (optional)
radio effects Link to a Radio Effect resource (optional)
aiml Name of Artificial Intelligence Markup Language

(AIML) file to use (optional)
parser Name of speech parser to use for Natural Language

Understanding (NLU)
attributes Arbitrary attributes for use in speech and behaviors
listen Enables/disables listening with speech recognition
radio enabled Enables/disables radio communications
earshot enabled Enables/disables face-to-face communication in 3D

environments
marking String used for DIS entity-attach (optional)
pitch shift Pitch shift amount; 0.9 low, 1 normal, 1.1 high
tts voice Text-to-speech (TTS) voice
tts rate Speech rate (1–9)
tts volume Speech volume (1–9)
breakpoints Breakpoints for inspecting Entity behavior

execution
default position Initial (X,Y,Z) position of the Entity in geocentric

coordinates

3

2.2 Interactions

api/scenarios/<scenario id>/interactions/
Interactions cause one or more Entities to speak. Each Interaction specifies a list of speech

actions to execute, one after the other. As an example, a “IED Attack” interaction might involve
a series of radio calls between the attacked vehicle and command personnel.

The JSON below represents an interaction named “Blackjack Under Attack” with two TTS
radio calls from different Entities. Since enabled is true and time is 0, the interaction will start
immediately. There will be a three second delay between radio calls because action delay is 3.

Variable Definition

action delay Default delay between actions (seconds)
enabled Enables/disables the interaction
variables Arbitrary variables; used during speech synthesis
holdoff Delay between loops (seconds)
limit Number of times the interaction should run

(0=forever)
time Interaction start time (seconds)
time type Enumeration controlling the start time [“rel”,

“utc”]
vbs2 trigger Optional VBS scripting expression to trigger this

interaction
actions List of actions to be executed (see table below)

The time type property determines the meaning of the specified start time. A relative time
type of “rel” means the time is relative to when the scenario begins or when the Interaction is
created. The UTC time type of “utc” means the time is a wall clock time, specified in seconds
since the Unix epoch. If an interaction is created with a UTC time in the past, the interaction will
not execute. The Voisus server system clock is used when determining when an Interaction should
begin. Confirm this clock is synchronized with external simulation system clocks to ensure proper
time-alignment of simulation events.

Actions

Each action in an Interaction has the following format. The action type defines whether TTS or
prerecorded speech will be used. In either case, the background parameter can be used to add
environmental ambiance or sound effects like gunfire into the speech stream.

Variable Definition

entity Link to an Entity resource (required)
type Starting offset in sound file (samples)
predelay Delay before this action executes (seconds)
text Action type enumeration [“tts”, “sound”]
sound Link to a Sound resource
background Link to a Sound resource to play in the background

4

If a type of “tts” is specified, the sound property is ignored. If text is specified for a “sound”
action, the text is understood to be a transcript of the sound file, and is shown as such on the
Construct status webpage.

2.3 Sounds

api/scenarios/<scenario id>/sounds/
Sound resources are used to play a sound effect or recorded speech in Construct. Each Sound

selects a sound file by name and a segment within the file to play. Sounds may be reused across
multiple Entities and Interactions. Sounds are separate from, but reference, sound files. Upload
sound files to reference using the web interface.

The JSON below represents a looping engine sound named “Diesel Engine”. The play count

value of 0 means the sound should loop indefinitely.

Variable Definition

file Sound file name (e.g. “explosion.wav”)
offset Starting offset in sound file (samples)
length Length of section to play; 0=all (samples)
gain Playback gain; 1.0 means no volume adjustment
play count Number of times to play when triggered

(0=forever)
play all If true, Sound will always play to the end before

stopping
random If true, each playback begins at a random position
loop start Start position of loop [0–1] (0=beginning, 1=end)
loop end End position of loop [0–1] (0=beginning, 1=end)
loop delay Delay between loops (seconds)
transcript Optional text transcript for a sound file containing

speech. Transcript is shown when an Entity
“speaks” using this Sound.

In many cases setting only the file property and using the defaults for the other properties
will yield the expected results. The Sound defaults to playing the entire sound file once at normal
volume.

2.4 Radio Effects

api/scenarios/<scenario id>/radio effects/
Radio Effects customize the sound of Entity radio transmissions by adding distortion, noise,

and band-limiting audio effects. Link a Radio Effect to one or more Entities by setting the
radio effects property in an Entity to the Radio Effect “self” URI.

The JSON below represents a Radio Effect named “High Distortion”.

2.5 Language Models

api/scenarios/<scenario id>/language models/

5

Variable Definition

distortion mode Switches between distortion, overdrive, and none
(0=none, 1=overdrive, 2=distortion)

distortion mix Adjusts the ratio of distorted to clean signal to be
transmitted (0=clean only, 1=distorted only)

distortion gain Gain applied to the signal before entering the
distortion effect. Higher gains yield a more
distorted sound.

limiter threshold Threshold in decibels (dB) that limits the peak
signal strength. More negative values yield quieter
transmissions.

noise gain Gain controlling the volume of noise added to the
transmission

gain Gain applied to the signal just before transmission
noise color Type of added noise: “white”, “pink”, or “brown”
hp freq Highpass filter frequency in Hertz (Hz)
lp freq Lowpass filter frequency in Hertz (Hz)

Language Model resources select a speech recognition model and specify custom parameters for
the recognition engine. To use a Language Model, set the language model property of an Entity
to the Language Model “self” URI.

Statistical language models or grammars must be pre-installed on the Voisus server for Speech
Recognition resources to be functional. Installed models are referenced by name in this resource.
In the example below, “atc11” is the name of a model provided by ASTi. Currently installed
models are listed in the model dropdown on the Language Models webpage. Contact ASTi for
more information on available language models.

The JSON below represents an ASR configuration named “ATC-ASR”.

Variable Definition

asr model Name of the language model on disk
grammar Grammar text in BNF format
parameters Newline-separated low-level parameters for the

recognition engine
root Name of the grammar rule to enable at start
shared Boolean controlling whether a single instance of

this language model should be shared across all
entities to conserve memory

When asr model points to a statistical language model, the grammar and root variables are
ignored.

Shared language models have one important limitation: only one entity may use it to process
speech at a time. If another entity starts listening at the same time with the same shared Language

6

Model, the speech it hears will not be transcribed with speech recognition.

3 Construct Settings

api/construct/settings/
These settings affect Construct behavior overall and are not Scenario specific. The settings

resource can only be modified (it cannot be created or deleted). Issue a HTTP PUT request to the
settings URI to update settings.

Variable Definition

log audio Boolean controlling whether speech recognition
audio is logged

log events Boolean controlling whether speech events are
logged

dm Optional network settings for a Discovery Machine
behavior engine

vbs2 Optional settings for interfacing with a VBS
instance

tts substitutions Optional text transformations for use during TTS

Frequently these settings are easily managed through the web interface, but they are also avail-
able in the API for dynamic modification from external systems.

We recommend enabling both log audio and log events in order to capture the complete
history of events on this Construct instance for later review and tuning.

4 Natural Language Parsers

api/construct/parsers/
This collection resource lists all available Natural Language Parsers installed on the Voisus

Server. Parser plugins provided by ASTi will be shown here. This list may be empty if no plugins
are installed.

This resource is read-only and is meant to support the selection of a parser in a Construct
Entity. The parser Entity attribute should be set to the name value of a parser in this collection.

5 Artificial Intelligence Markup Language (AIML)

api/construct/aiml/
AIML describes voice interactions and natural language processing capabilities for a Construct

Entity. AIML resources created here are referenced by ID with an Entity’s aiml attribute. The
text attribute of the AIML resource should contain the complete XML specification of the AIML
behavior.

6 Runtime Entities

api/construct/entities/

7

Variable Definition

name Name of the AIML definition
text XML formatted AIML specification

Construct Entities that are actively running exist here in the runtime Entity API. Runtime
Entities are separate from, but related to, Entity resources defined in the Scenario. The key
distinction is that a Scenario and the Entity resources within can be edited without the Scenario
currently running. When a Scenario runs, its Entities are created and become accessible through
this API endpoint. Alternatively, if an application calls for Entities that exist only temporarily,
and should not be saved in the Scenario, this endpoint is used to manage those Entities directly.

Runtime entities are synchronized with their corresponding Scenario resource, if one exists.
The attributes shown below track the current runtime Entity state and are updated dynamically

as the system runs. For example, the speaking value updates when the Entity speaking state
changes.

This runtime Entity state is also available via the Construct status streaming API endpoint to
eliminate the need to repeatedly poll for this information. See below for documentation on the
streaming endpoint.

Note that references to other resources are in the form of IDs or names here instead of by URI
like in the Scenario resources.

7 Utterances

api/construct/utterances/
An utterance is a single speech event for a Construct Entity. Entity speech can be triggered

indirectly from Interactions and Behaviors, or directly from a remote system via this Utterances
API endpoint.

This endpoint is only useful when a Scenario is actively running.
An HTTP client may POST to /api/construct/utterances/to create a new utterance. The client

must provide a JSON object with an entity parameter specifying the ID of the entity that should
speak. Either text or sound should be provided, depending on whether the client wishes to use
TTS or a prerecorded speech file, respectively. The server response includes the self URI which
can be polled for status, including the error and complete flags.

8 Streaming Status and Events

api/construct/status/
The Construct status endpoint is useful when a client wishes to receive continuous state updates

and event notifications from Construct Entities. An HTTP GET request on this API endpoint
will block until the running Scenario is stopped. While the Scenario is running, JSON messages,
separated by newline characters, will be sent from the server. Due to the blocking behavior of this
endpoint, clients may wish to spawn a separate thread to issue this request in order to not block
the client application’s main thread.

When a Scenario is running and a client makes a request, a connected message will be sent:

8

Variable Definition

id Entity ID
domain Name of the Entity’s selected DIS exercise
net Net ID
net name Net name from the Commplan
language model Language Model ID
language model name Language Model name
behavior Behavior ID
behavior name Behavior name
behavior state Enumeration: [‘inactive’, ‘active’, ‘error’, ‘finished’]
behavior node Last executed behavior node
blackboard URI of Entity blackboard containing current state

variables
aiml AIML definition ID
aiml name AIML name
parser Selected natural language parser name
state Enumeration: [‘initializing’, ‘active’]
listen true if the Entity is actively listening for speech
speaking true if the Entity is currently speaking
speech state Enumeration: [‘idle’, ‘waiting’, ‘ptt’, ‘speaking’,

‘finished’]
speech text Text of the current utterance, if there is one
asr state Enumeration: [‘inactive’, ‘initializing’, ‘active’,

‘error’]
radio enabled Radio enabled/disabled state
earshot enabled Earshot enabled/disabled state
pitch shift Voice pitch shift value
tts voice Selected TTS voice
tts rate Current TTS speech rate (1–9)
tts volume Current TTS speech volume (1–9)
marking Marking field string used to link with an Entity on

the network
attributes Arbitrary key:value pairs for use in behaviors and

speech
position Current geocentric position
default position Initial geocentric position
breakpoints List of currently set behavior breakpoints
breakpoint Active breakpoint information
radio state tx active and rx active state for the radio
earshot state tx active and rx active state for 3D

communications

9

Variable Definition

id Utterance ID
entity URI or ID of the Entity that should speak
text Speech text for TTS
sound Sound ID for prerecorded speech playback
background Sound ID for a background sound during the

tranmission
complete Status returned from the server; true when

utterance speech has finished
error Error status returned from the server

All messages from the server will include a type which is either “connected”, “update”, “delete”,
or “event” depending on the situation. Clients should ignore received messages that have an un-
known type.

8.1 Entity Update

An update message notifies the client that an Entity was created or updated.

8.2 Entity Delete

A delete message notifies the client that an Entity was deleted.

8.3 Speech Event

The speech event type notifies the client that an Entity has started speaking.

8.4 Speech-Finished Event

The speech-finished event type notifies the client that an Entity has stopped speaking.

8.5 Speech Recognition Event

The message event type notifies the client of a speech recognition event.

10

Variable Definition

text Recognized speech text after optional substitutions
original text Raw recognized speech from the recognition engine
confidence Speech recognition confidence level (0–100)
recording URI for recording of recognized speech
meaning Extracted speech meaning from parser or AIML
net id ID of radio net that received the speech
net name Name of the radio net
max sample Peak sample value in the received speech
voice true if this was a voice message (as opposed to a

text message)
time Unix timestamp when speech was recognized

11

