
Revision C
Version 2
March 2023
Document DOC-VS-CON-UG-C-2

Advanced Simulation Technology inc.
500A Huntmar Park Drive • Herndon, Virginia 20170 USA

(703) 471-2104 • asti-usa.com

Construct
User Guide

Product Name: Voisus

Construct User Guide

© Copyright ASTi 2023

Restricted rights: copy and use of this document are subject to terms provided in ASTi’s Soft-
ware License Agreement (www.asti-usa.com/license.html).

ASTi
500A Huntmar Park Drive
Herndon, Virginia 20170 USA

https://www.asti-usa.com/license.html

Red Hat Enterprise Linux (RHEL) Subscriptions

ASTi is an official Red Hat Embedded Partner. ASTi-provided products based on RHEL
include Red Hat software integrated with ASTi's installation. ASTi includes a Red Hat sub-
scription with every purchase of our Software and Information Assurance (SW/IA) main-
tenance products. Systems with active maintenance receive Red Hat software updates and
support directly from ASTi.

Export Restriction

Countries other than the United States may restrict the import, use, or export of software that
contains encryption technology. By installing this software, you agree that you shall be solely
responsible for compliance with any such import, use, or export restrictions. For full details
on Red Hat export restrictions, go to the following:

www.redhat.com/en/about/export-control-product-matrix

http://www.redhat.com/licenses/export

v

Revision history
Date Revision Version Comments

7/26/2017 B 0 Converted Construct content to PDF format; edited
content for grammar, style, and accuracy.

1/12/2018 B 1 Fixed broken hyperlinks to Construct API.

3/8/2018 B 2 (5.33) Fixed variable display errors throughout doc-
ument and modified formatting styles.

6/13/2018 B 3 (5.34) Removed VBS2 reference in "Add an inter-
action." Made changes to syntax and grammar per
the style guide.

9/28/2018 B 4 (7.0.1) Removed Add Voices reference in "Add an
entity." Updated screenshot.

9/18/2020 C 0 (7.8.0) Updated Voisus web interface screenshots.

8/10/2021 C 1 (7.11.1) Updated screenshots of all table header
styles.

3/8/2023 C 2 (8.0.0) Added the Red Hat Enterprise Linux sub-
scription and export statements to the front matter.

vi

vii

Contents
1.0 Introduction 1
1.1 Speech licenses 2

2.0 Scenario Management 4
2.1 Add a scenario 4

3.0 Comm Plan 6

4.0 Entities 7
4.1 Add an entity 8

4.2 Monitor entities 12

4.3 Entity action 13

5.0 Interactions 14
5.1 Add an interaction 15

6.0 Sounds 17
6.1 Add a sound 18

7.0 Language models 21
7.1 Enable speech recognition 22

7.2 Grammar syntax 24

8.0 Radio Effects 26

9.0 Construct Settings 27

10.0 AIML 29
10.1 AIML tags 31

10.2 AIML Construct integration 31

10.3 AIML responses and meaning values 32

10.4 Create and map AIML definition to entity 33

11.0 Behaviors 35
11.1 Create a new behavior 35

11.2 Map new behavior to entity 36

viii

11.3 Behavior execution 37

11.4 Behavior node types 38

11.4.1 Composite nodes 39

11.4.2 Repeat nodes 39

11.4.3 Action nodes 40

11.4.4 Utility nodes 41

11.5 Behavior expressions 41

1.0 Introduction
Construct is a constructive simulation toolkit that adds synthetic communications to training
systems such as flight simulators, Serious Games, and command and control environments.
Construct adds voice and radio capabilities to simulated entities and game avatars so that
trainees can interact with them verbally. Entities are augmented with a simulated radio that
transmits and receives on a specified communications net. Construct also enables face-to-face
communication in 3D game environments between avatars and human players. Construct's
resources are set up using the Voisus web interface or via programming with its HTTP
Application Programming Interface (API).

Construct contains the following features:

l Simulated radios (Distributed Interactive Simulation (DIS) / high-level architecture
(HLA)

l Text-to-speech (TTS)

l Automated speech recognition (ASR)

l Sound file playback

l Face-to-face communications in 3D environments

l HTTP API for realtime control and status reporting

l Web interface for remote viewing and configuration

l Integrated with Voisus scenarios and Comm Plans

l DIS entity attach

l Entity behavior modeling tools

l Natural language processing

l Radio effects and background sound layering

Each application may use a different combination of these features. Applications needing
only simple background radio chatter, for example, may use the Voisus web interface to
quickly script and then trigger radio transmissions on demand. Higher fidelity and more auto-
mated training systems may call for dozens of intelligent voice agents that listen, think, and
respond to voice messages from human players using a combination of ASR, automated beha-
viors, and TTS.

Construct is used both standalone and as part of large, integrated training systems. When
integrated into a larger training system, Construct's HTTP API and the DIS network are the
two mechanisms for inter-operation. For example, a simulation host computer can issue
HTTP requests to Construct in order to trigger TTS transmissions from simulation entities,
which are then heard by all human trainees with in-tune radios in the exercise.

Copyright © 2023 Advanced Simulation Technology inc. 1

Construct User Guide (Rev. C, Ver. 2)

1.1 Speech licenses
If your application requires text-to-speech (TTS) or automatic speech recognition (ASR), one
or more speech licenses must be installed on the Voisus server. To confirm the expected num-
ber of speech streams are enabled, follow these steps:

1. From the top right, go toManage () > Licensing.

Figure 1: Licensing navigation

2. Go to Speech.

3. Under Upload a License, select Browse, and find the speech license file on your local
system.

Figure 2: Licensing

The number of TTS streams determines the number of speech events that can be pro-
cessed simultaneously. For example, if three entities need to talk at the same time, then
you need three TTS streams.

2 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

Licenses are included in system backups via Backup & Restore.

Figure 3: Backup & Restore

Copyright © 2023 Advanced Simulation Technology inc. 3

Construct User Guide (Rev. C, Ver. 2)

2.0 Scenario Management
A scenario contains all the information needed for a specific training task or simulation, such
as entities, interactions, behaviors, sounds, and a Comm Plan. You can add these resources to
a scenario via the Voisus web interface or the Hypertext Transfer Protocol (HTTP) Applic-
ation Programming Interface (API). This section describes the management of scenarios in
the Voisus web interface.

Access Construct's scenario management by selecting Construct () on the home page
and then selecting Scenarios.

On Scenarios, add, copy, delete, rename, and run scenarios as needed.

Figure 4: Scenarios

Without a scenario running, the Voisus server is almost completely idle. Running a scenario
brings to life the sounds, speech, and communications stored within. Scenarios can be edited
on the fly and changes take effect immediately. When the Voisus server reboots, the scenario
running at shutdown also restarts.

Voisus servers may hold an unlimited number of scenarios and can run one scenario at a
time. These scenarios can be created, viewed, modified, and run by all system users logged
on to that particular server.

2.1 Add a scenario
Before Voisus clients can communicate with each other, you must build and run a new scen-
ario in the Voisus web interface. To build and run a scenario, follow these steps:

1. Open a web browser on a computer or tablet sharing a network with the Voisus server.

2. In the address bar, enter the Voisus server's IP address.

3. Log into the Voisus web interface using the following default credentials:

Username Password

admin astirules

4 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

4. From the top navigation bar, go to .

Figure 5: Select a Scenario

5. Under Create New Scenario, select Start with, and choose a scenario template.

Figure 6: New scenarios

The example scenarios come with a Comm Plan, roles, and radios that you can modify
as needed.

6. In New Scenario Name, enter a unique name for the scenario.

7. Select .

8. Select to run the scenario and to view/edit its resources. You can dynam-
ically edit scenarios while they are running.

Copyright © 2023 Advanced Simulation Technology inc. 5

Construct User Guide (Rev. C, Ver. 2)

3.0 Comm Plan
The Comm Plan is a collection of virtual nets that represent communications channels or fre-
quencies for radios or intercoms. Entities may have a radio with a net. The net determines
which entities and human players can communicate.

l Nets define the frequency, modulation type, bandwidth, and crypto settings for the
radios.

l At a minimum, nets require a valid frequency and waveform to work properly.

l Only entities and Voisus clients with matching net settings are able to communicate.

l If using speech recognition, ensure the transmitting radio is using a high quality wave-
form, otherwise recognition accuracy will be reduced. Use PCM encoding and a 16
KHz sampling rate for best results. In some situations, this may require changing the
radio settings on a remote system.

Figure 7: Construct Comm Plan

6 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

4.0 Entities

Communications modeling in Construct centers on simulation entities that represent aircraft,
ground vehicles, or other agents in the environment. Each entity is given a voice and radio to
enable communication with each other and with human players. Hundreds of entities can be
modeled by a single Construct instance to support large simulation events with a small foot-
print. Construct entities may be created, modified, and deleted on demand using both the web
interface and the Hypertext Transfer Protocol (HTTP) Application Programming Interface
(API).

The Voisus web interface is the most commonly used approach during initial setup and for
simple applications. Using a web browser, an administrator or scenario designer can quickly
create a handful of entity definitions with customized voice and radio settings. These entities
definitions are stored in the scenario, and the corresponding run-time entity instances are cre-
ated when the scenario is installed and destroyed when the scenario is uninstalled. Con-
figuration changes, such as changing an entity's communication net, take effect immediately
while the scenario is running.

The HTTP API, on the other hand, supports low-level, high-performance, and dynamic con-
trol of entities. Any client of the API is able to program entity definitions in the scenario and
interact directly with the run-time entity instances. The HTTP API is also the primary means
to integrate Construct with external simulator systems. For more information about the HTTP
API, go to Construct API.

Construct entities follow standard radio protocol to avoid ‘stepping on’ radio transmissions
from other entities or human players on the network. When an entity plans to speak, it will
wait for the communication net to be idle before transmitting.

Although entities have many attributes, many are optional, and only a few are needed for an
entity to talk on a radio. At a minimum, the entity will need a domain, net, and text-to-speech
(TTS) voice set in order for it to communicate. The domain and net determine which Dis-
tributed Interactive Simulation (DIS) exercise and radio frequency the entity will com-
municate on, respectively. Entity attributes are editable both on the Entity web page and
using the HTTP API.

Copyright © 2023 Advanced Simulation Technology inc. 7

Construct User Guide (Rev. C, Ver. 2)

http://support.asti-usa.com/media/pdf/voisus/construct_api.pdf

4.1 Add an entity
To add an entity, follow these steps:

1. From the top-left navigation bar, go to Construct () > Entities.

Figure 8: Entities navigation

2. To create a new entity, under Entities, select Create Entity ().

3. On General, in Name, enter a name.

4. To set the entity's Distributed Interactive Simulation (DIS) domain, under Comms,
select Domain, and choose a domain. To create a domain, select Edit Domains ().

5. To set the entity's virtual net, select Net, and choose a net. This list displays all nets
available in the scenario's Comm Plan. To add a net, select Edit Commplan ().

Figure 9: Entity Comms

6. (Optional) To select an audio effect, select Radio Effects, and choose an effect. When
applied, these effects degrade the audio quality for increased realism.

8 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

7. (Optional) If the entity uses propagation for radio ranging, under Position, in
Marking, enter a marking string. These coordinates associate the entity with a DIS
entity on the network. For Virtual Battlespace (VBS), enter the Uniform Resource
Name (URN) marking field of the object you wish to attach to.

Figure 10: Entity Position

8. To edit synthetic speech and voices, go to Voice.

9. Under Text-to-Speech, select Voice, and choose the entity's voice.

10. To adjust the TTS voice's pace, select Rate, and then choose a pace. Values range
from 1–9, where 1 is slowest, and 9 is fastest.

11. To adjust the TTS voice's volume level, select Volume, and choose a volume. Values
range from 1–9, where 1 is the quietest, and 9 is the loudest.

Figure 11: Entity Text-to-Speech

12. To raise or lower the voice's pitch, under Audio Controls, in Pitch Shift, specify a
value. You can adjust the values by 0.1 at a time. The adjustment range is 0.8–1.2. The
default value of 1.0 means no pitch shifting occurs.

Copyright © 2023 Advanced Simulation Technology inc. 9

Construct User Guide (Rev. C, Ver. 2)

This setting expands the number of distinct voices available. Different entities can use
the same pitch-shifted TTS voice to appear as though it is two different voices.

Figure 12: Entity Audio Controls

13. To assign an intelligent behavior to this entity, go to the Advanced tab, select the
Behavior list, and choose a behavior. To edit or add behaviors, select Edit Behaviors
().

14. To assign a speech recognition language model to this entity, select the Language
Model list, and choose a model. To edit or add models, select Edit Language Model (

).

15. To assign a language parser to the entity, select the Language Parser list, and choose
a parser. Language parsers extract call signs, waypoints, and other variables from recog-
nized speech. ASTi creates language parsers and installs them as plug-ins.

16. To assign an Artificial Intelligence Markup Language (AIML) definition, select the
AIML list, and choose a definition. To edit or add definitions, select Edit AIML (
).

These definitions allow you to create automated, reactive behaviors and simple natural
language-processing solutions. Much like language models, AIML definitions allow
entities to automatically respond to verbal commands.

17. If the entity should actively listen and recognize audio from other human trainees,
select Listen to Humans.

18. If the entity should actively listen and recognize audio from other entities, select
Listen to Entities.

19. To enable radio commands, select Enable Radio. For the radio to operate, ensure a net
and domain are set in Steps 4 and 5.

10 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

20. To enable face-to-face communications, select Enable Vocal Range. This setting is
useful when the entity has an avatar in a 3D game environment.

Figure 13: Entity Advanced settings

21. You can add JavaScript Object Notation (JSON)-formatted attributes to the entity for
behaviors and speech text with parameters. In Attribute, enter an attribute value (e.g.,
"altitude"). Enter a value in Value, and select Set Attribute.

Figure 14: Entity Attributes

Copyright © 2023 Advanced Simulation Technology inc. 11

Construct User Guide (Rev. C, Ver. 2)

4.2 Monitor entities
For a realtime view of the running entities, go to Construct Status.

Figure 15: Construct Status

Here you can monitor all entities running on the server, including entities created in the
Voisus web interface and those created using the run-time entity Application Programming
Interface (API). The status page also features a text field to input and trigger speech from an
entity on the fly. Each time an entity receives or transmits, the activity will be displayed on
the web page. This run-time status information is also accessible via the Hypertext Transfer
Protocol (HTTP) API.

Figure 16: Monitor entities

12 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

4.3 Entity action
Entities are spurred into action in one of several ways:

l Interactions script a fixed sequence of radio calls between one or more entities. For
more information about interactions, go to Section 5.0, "Interactions" on the next page.

l Behaviors define entity decision making and voice responses. for more information
about behaviors, go to Section 11.0, "Behaviors" on page 35.

l The Hypertext Transfer Protocol (HTTP) Application Programming Interface (API)
allows you to use a programming language of your choice to remotely trigger entity
behaviors and speech. For more information about the HTTP API, go to Construct API.

If you are unsure of which route to take, start with interactions and go from there. Construct
also works with Discovery Machine Behavior Modeling Console and other third party soft-
ware using the HTTP API.

Copyright © 2023 Advanced Simulation Technology inc. 13

Construct User Guide (Rev. C, Ver. 2)

http://support.asti-usa.com/media/pdf/voisus/construct_api.pdf

5.0 Interactions
Interactions prompt entities to take action and speak. The interaction can be a one-way broad-
cast, or it can describe a back-and-forth conversation between multiple entities. Interactions
are useful when creating an ongoing backdrop of radio chatter on a radio frequency. Altern-
atively, trigger interactions at a specified start time or based on other conditions, like a char-
acter's position in a 3D game environment. Each interaction lists a fixed sequence of speech
events that occur, separated by a specified amount of time.

To create a short exchange in Construct, create two entities and one interaction. The inter-
action should contain two actions, one for each radio transmission. Interactions are relatively
simple and limited in possibilities. If you wish to recreate more sophisticated reactions and
decision making, use behaviors, Artificial Intelligence Markup Language, or the Hypertext
Transfer Protocol (HTTP) Application Programming Interface (API).

As with entities, interactions are shown on Construct Status along with any activity resulting
from the running interactions.

Figure 17: Construct Status page

14 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

5.1 Add an interaction
To add an interaction, follow these steps:

1. From the top-left navigation bar, go to Construct () > Interactions.

Figure 18: Interactions navigation

2. Under Interactions, select Create Interaction ().

3. On General, in Name, enter a name for the interaction.

4. To enable the interaction, select Enabled.

5. Under Start Time, select Type, and choose one of the following:

l Relative: time is specified relative to the start of the scenario.

l UTC: time is based on the system clock; a relative time of 0 means start executing
immediately.

l VBS Trigger: starts the interaction based on a Virtual Battlespace (VBS) scripting
command.

6. In Time, enter a time offset in seconds. This value determines when the interaction
starts execution. The meaning of this value depends on the Type.

Figure 19: Interaction Start Time

7. If the interaction should play on a loop, under Loop, select Loop Forever.

Copyright © 2023 Advanced Simulation Technology inc. 15

Construct User Guide (Rev. C, Ver. 2)

8. If Loop Forever is cleared, in Play Count, enter the number of times the interaction
will loop.

9. In Delay, enter the delay time in seconds between loops.

Figure 20: Interaction Loop

16 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

6.0 Sounds
Sounds define segments of a sound file that Construct uses. Sound settings including gain, an
optional transcript, and loop parameters. Sounds reference sound files containing either recor-
ded speech or effects like gunfire or cockpit noise. Once a sound is defined in a scenario, it
can be referenced by multiple interactions and behaviors to be used for entity speech or sound
effects.

If you have speech recordings you would like to replay on the network as radio chatter, create
a sound for each unique radio transmission. If you are using an interaction to sequence the
radio chatter, add an action for each radio transmission, selecting the corresponding sound in
the action list. Running the interaction will now replay your recordings onto the Distributed
Interactive Simulation (DIS) network. Sounds used in this way are an alternative to using
text-to-speech (TTS) to synthesize speech. For sounds containing speech, it is useful to fill
Transcript so that the corresponding text displays on Construct Status when the entity
speaks.

Figure 21: Construct Status

Note: Sounds are distinct from the sound files (.wav) they reference. Sound files are
uploaded and managed on Sound Files, which contains a library of default sound files.
Sound files can be referenced by sounds in multiple scenarios if desired.

Copyright © 2023 Advanced Simulation Technology inc. 17

Construct User Guide (Rev. C, Ver. 2)

When a sound is created and its sound file is selected, the entire sound file will be used by
default. The Offset and Length parameters identify a subsection of the sound file to use
instead. This is useful if there is too much silence at the beginning or end of the file. Editing
sound parameters takes effect immediately.

Figure 22: Sound Files page

6.1 Add a sound
To add a sound, follow these steps:

1. From the top-left navigation bar, go to Construct () > Sounds.

Figure 23: Sounds navigation

2. Under Sounds, select Create Sound ().

3. In Name, enter a unique sound name.

4. In Gain, enter a value representing the gain applied to the sound during playback. A
value of 1, which is the default, results in no volume change; a value of 0 silences the
sound.

18 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

5. Under Sound File, select File, and choose a sound file. To upload new sound files,
select Edit Sound Files ().

6. In Offset, enter the location in the sound file to start playback. The default value of 0
means playback starts at the beginning, whereas a value of 16,000 means playback
starts 16,000 samples into the file.

7. In Length, enter the length in samples of the section to play. The default value of 0
means play to the end of the file.

8. (Optional) In Transcript, enter a transcript for a sound containing speech. When a
Construct entity speaks the sound, the associated transcript displays on the status page
and in the Construct event history.

Figure 24: Sound File settings

9. If this sound should repeat indefinitely, under Loop, select Loop Forever.

10. In Loop Start, enter the starting position of the loop within the sound. Decimal values
range from 0–1 inclusively.

11. In Loop End, enter the ending position of the loop within the sound. Decimal values
range from 0–1 inclusively.

12. In Delay, enter the delay value in seconds between sound loops.

Copyright © 2023 Advanced Simulation Technology inc. 19

Construct User Guide (Rev. C, Ver. 2)

13. If playback should start at a random location in the sound, select Randomize. Use this
setting to add variation to the sound environment.

Figure 25: Sound loops

20 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

7.0 Language models
Language models define the phraseology to be recognized and transcribed by the Construct
Automatic Speech Recognition (ASR) system. Construct supports two types of speech recog-
nition language models:

l Statistical Language Models (SLMs)

l Grammars

In Construct, each entity has an optional language model selection, which should be filled in
if that entity should listen and respond to human speech. The type of speech the entity is
expected to encounter should determine the settings for its language model. For example, if
the entity should listen and respond to conversational English, a general English SLM should
be used.

The grammar approach describes a strict syntax for the speech to be recognized using Backus
Naur Form (BNF). Grammars are best suited for small domains with very constrained phras-
eology. Conversely, the more complex and variable the phraseology, the more likely it is that
the statistical approach is the better choice.

With the SLM approach, the model is trained on thousands of transcriptions from the applic-
ation domain that help determine the most likely sequence of words for each new utterance.
This approach is accepting of new word combinations that are more suitable for large vocab-
ulary tasks. SLMs are highly accurate when the training data is a good match to the real data.

ASTi has a number of models available if the Construct ASR package is enabled. To obtain a
model for your project, contact ASTi. To access speech recognition events from other sys-
tems on the network, go to Construct API.

Copyright © 2023 Advanced Simulation Technology inc. 21

Construct User Guide (Rev. C, Ver. 2)

http://support.asti-usa.com/media/pdf/voisus/construct_api.pdf

7.1 Enable speech recognition
To enable speech recognition, follow these steps:

1. From the top-left navigation menu, go to Construct () > Language Models.

Figure 26: Language Models navigation

2. To add a new model, under Language Models, select Create Language Model ().

3. In Name, enter a name for the language model.

4. Select Speech Model, and choose a grammar or Sound Language Model (SLM). ASTi
recommends starting with package-16K-EN-120210, a general English SLM that
recognizes conversational English spoken with an American accent.

5. If multiple entities share the language model, select Shared. This setting is recom-
mended for SLMs due to their consumption of notable amounts of system random-
access memory (RAM). Depending on the system's amount of RAM, multiple entities
using non-shared language models could starve the system, causing audio breakup or
other issues.

Figure 27: Language Models page

22 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

6. From the top-left navigation bar, go to Construct () > Entities.

Figure 28: Entities navigation

7. On Entities, select or create the entity that will use speech recognition. For more
information about entities, go to Section 4.1, "Add an entity" on page 8.

8. Go to Advanced.

9. Select Language Model, and then choose the language model you created in Steps 2–
5.

10. Select Listen to Entities.

Copyright © 2023 Advanced Simulation Technology inc. 23

Construct User Guide (Rev. C, Ver. 2)

The entity automatically transcribes any received audio, producing a recognition event.
The recognition text displays on Construct Status and Construct Events.

Figure 29: Construct Events

Entities do not listen to each other speak; they only listen to and perform speech recog-
nition on audio transmitted by humans. An entity's response is determined by the
entity's behavior, selection status, or the simulation host computer if it is listening via
the Hypertext Transfer Protocol (HTTP) application program interface (API).

7.2 Grammar syntax
A grammar text area is displayed when an acoustic model is selected, allowing you to per-
form minor tasks for rote speech recognition. Edit the grammar in place on the web page, or
copy and paste the grammar contents from a file on your computer. A simple grammar to
recognize one or more digits is as follows:

<Digit> = (zero | one | two | three | four | five | six | seven |
eight | nine);

public <TopLevel> = <Digit>+;

24 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

Table 1, "Grammar syntax meaning" below shows Construct grammar syntax and its mean-
ing:

Grammar Syntax Meaning

<Rule> = expression; Define a new grammar rule or non-terminal

hi | hello Choose between multiple options

() Parentheses create groups of items

+ Match the preceding expression one or more times

* Match the preceding expression zero or more times

[] Brackets make the expression within optional

Table 1: Grammar syntax meaning

Copyright © 2023 Advanced Simulation Technology inc. 25

Construct User Guide (Rev. C, Ver. 2)

8.0 Radio Effects
Radio effects make entity radio transmissions sound more realistic using added distortion,
noise, and other filtering effects. You can also number radio effects to a scenario, but each
entity can only use one effect at a time. A wide range of sounds is possible (e.g., "clean,"
gritty," "noisy") all by adjusting the handful of settings in the radio effect definition. Multiple
entities can share a single radio effect. Entities without radio effects are automatically
assigned system default effects.

Figure 30: Radio Effects navigation

26 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

9.0 Construct Settings
Construct Settings allows editing miscellaneous Construct parameters. These settings affect
all scenarios, not just the one you are editing. To edit Construct settings, follow these steps:

1. From the top-left navigation bar, go to Construct () > Settings.

Figure 31: Settings navigation

2. Set one of the following:

l Discovery Machine Port: opens a port on this server to accept connections from a
remote Discovery Machine artificial intelligence (AI) instance; supports external
behavior modeling for Construct entities. A value of 0 disables this feature.

l VBS Server: contains the IP address or host name of an associated Virtual
Battlespace (VBS) server. Construct behaviors and interactions use this VBS server
when specified. This features requires ASTi's JRPC-VBS Add-in.

l VBS Port: the network Transmission Control Protocol (TCP) port opened by the
ASTi JRPC-VBS Add-in.

Figure 32: Construct port settings

Copyright © 2023 Advanced Simulation Technology inc. 27

Construct User Guide (Rev. C, Ver. 2)

3. The TTS Substitutions area allows you perform text substitutions within entity tran-
scripts. Use this feature to correct mispronunciations and transform abbreviations into
the corresponding spoken form. These substitutions affect all entities and scenarios.

In Text, enter the expression you want to replace, and in Replacement, enter the cor-
rected script. When finished, select .

Figure 33: TTS Substitutions

Note: Text accepts Python-formatted regular expressions. For more information
about Python syntax, go to Regular expression operations.

28 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

https://docs.python.org/2/library/re.html

10.0 AIML
Artificial Intelligence Markup Language (AIML) describes voice responses and simple nat-
ural language understanding for Construct entities. The XML-based AIML syntax features
pattern matching, response templates, and the ability to store and retrieve variables. To activ-
ate certain response templates, Construct matches AIML input patterns against voice mes-
sages that the entity receives. Response templates modify entity state variables and generated
automated voice response. Once you create an AIML definition, you can reuse it in any num-
ber of scenarios on the Voisus server.

AIML is a useful tool for creating simple reactive entities, but some applications may require
more custom logic or more sophisticated natural language understanding. When an applic-
ation outgrows AIML, you can use other behavior and natural language processing tools
provided by ASTi or from another source. You can integrate these tools with the Construct
Hypertext Transfer Protocol (HTTP) application program interface (API).

The AIML definition below matches phrases in the following formats:

l "Contact wolverine on blue four"

l "Radio check two one eight point five"

l "Radio check"

l Unknown phrases result in "say again" response

The following text shows an example of AIML code:

<?xml version="1.0" encoding="ISO-8859-1"?>
<aiml version=1.0">

<category>
<pattern>CONTACT * ON * </pattern>
<template>
Roger contacting <star index="1"/> on <star index="2"/>
<think>
<set name="Command">contact</set>
<set name="Callsign"><star index="1"/></set>
<set name="Frequency"><star index="2"/></set>
</think>
</template>
</category>

Copyright © 2023 Advanced Simulation Technology inc. 29

Construct User Guide (Rev. C, Ver. 2)

<category>
<pattern>RADIO CHECK *</pattern>
<template>
<srai>RADIO CHECK</srai>
</template>
</category>

<category>
<pattern>RADIO CHECK</pattern>
<template>
Read you lima charlie
<think>
<set name="Command">radio_check</set>
</think>
</template>
</category>

<category>
<pattern>*</pattern>
<template>
Say again
<think>
<set name="Command">unknown</set>
</think>
</template>
</category>

</aiml>

30 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

10.1 AIML tags
Artificial Intelligence Markup Language (AIML) syntax includes the following tags:

Tag Definition

<?xml> Must be present as the first tag in an AIML definition.

<aiml> AIML block delimiter; only one supported per file.

<category> Knowledge unit containing one pattern and one response template.

<pattern>PATTERN</pattern> Input pattern used to match received speech.

<template> Template describing the response for an input pattern.

<star index="N"/> Binds to the value of * for use in response templates.

<srai>PATTERN</srai> Symbolic reduction operator for calling other categories.

<set name="VAR">VALUE</set> Sets a variable to the specified value.

<get name="VAR"/> Retrieves the value of a variable.

<think> Hides the output of the computations within from the response.

Table 2: AIML tag definitions

10.2 AIML Construct integration
Construct adds functionality beyond the core Artificial Intelligence Markup Language
(AIML) standard in order to more tightly integrate AIML with the state of the entity and its
natural language understanding. In particular, special meaning is given to AIML variables
depending on capitalization:

l Lowercase variables like name are synced between the entity blackboard and the AIML
state. This enables setting entity attributes on the web page or in behaviors and using
those variables in speech generated from AIML. Similarly, when AIML sets one of
these variables, the variable is set in the entity blackboard.

l Uppercase variables like Command set in AIML are used as key-value pairs in the
speech recognition result meaning value. The meaning is then included in the speech
recognition event sent to HTTP application program interface (API) clients for use in
artificial intelligence decision making.

l Variables beginning with an underscore (e.g., _state) are considered private to AIML.

l The AIML response, if there is one, is immediately spoken by the entity.

Copyright © 2023 Advanced Simulation Technology inc. 31

Construct User Guide (Rev. C, Ver. 2)

10.3 AIML responses and meaning values
Received voice message:

contact wolverine on blue four

Matching AIML category:

<category>
<pattern>CONTACT * ON * </pattern>
<template>
Roger contacting <star index="1"/> on <star index="2"/>
<think>
<set name="Command">contact</set>
<set name="Callsign"><star index="1"/></set>
<set name="Frequency"><star index="2"/></set>
</think>
</template>
</category>

Resulting meaning value:

{
"Command": "contact", "Callsign": "wolverine", "Frequency": "blue
four"
}

Entity voice response:

Roger contacting wolverine on blue four

32 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

10.4 Create and map AIML definition to entity
To create a new AIML definition and map it to an entity, follow these steps:

1. From the top-left navigation bar, go to Construct () > AIML.

Figure 34: AIML navigation

2. Under AIML Files, select Create AIML File ().

3. On the right, in Name, enter a unique name for the definition.

4. In XML Definition, modify the definition as desired. If your AIML is large, it may be
easier to edit the file on your computer, and copy and paste it into the Voisus web inter-
face.

5. To save your changes, select outside XML Definition, and the definition automatically
saves.

Copyright © 2023 Advanced Simulation Technology inc. 33

Construct User Guide (Rev. C, Ver. 2)

6. From the top-left navigation bar, go to Construct () > Entities.

Figure 35: Entities navigation

7. Under Entities, choose an entity to associate with the definition.

8. On the right, go to Advanced.

9. Select AIML, and then select the definition you created in Steps 2–5.

Figure 36: AIML definition mapping

34 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

11.0 Behaviors
Behaviors enable Construct entities to listen, speak, and otherwise act autonomously in the
simulation environment. These behaviors consist of a hierarchical, tree-like structure of nodes
with the purpose of breaking complex high-level tasks down into smaller sub-tasks and even-
tually into individual actions for the entity to execute. Although behaviors can be built to auto-
mate many types of tasks, with Construct the focus is most commonly on reproducing the
speech patterns and radio communication protocols of real world agents.

A few examples of actions available in Construct behaviors include:

l Listen for a radio transmission containing certain keywords (e.g., a call sign).

l Speak and transmit on a radio or face-to-face in a 3D environment.

l Execute a scripting command in attached game environments like Virtual Battlespace.

l Wait on a condition or event, then speak.

Depending on the application, behaviors are built to run for the duration of the scenario, or
they can complete execution and exit after certain tasks are finished.

11.1 Create a new behavior
To create new behaviors, follow these steps:

1. From the top-left navigation bar, go to Construct () > Behaviors.

Figure 37: Behaviors navigation

2. Under Behaviors, select Create Behavior ().

3. On the right, in Name, enter a unique name for the behavior.

Copyright © 2023 Advanced Simulation Technology inc. 35

Construct User Guide (Rev. C, Ver. 2)

4. To add a root node to the behavior, choose a node list, and then choose a specific node
type.

5. To add more nodes to the behavior, select the radio button on an existing node, and
use the node-type menus to add children nodes.

Figure 38: Behaviors

6. To show or hide a node's configuration settings, select the eye ().

11.2 Map new behavior to entity
To map the new behavior to an entity, follow these steps:

1. From the top-left navigation bar, go to Construct () > Entities.

Figure 39: Entities navigation

2. Under Entities, choose the entity you will link to the behavior.

3. Go to Advanced.

36 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

4. Select Behavior, and choose the behavior you created in Section 11.1, "Create a new
behavior" on page 35.

Figure 40: Behavior entity mapping

If the scenario is running, the behavior starts executing immediately. Changes made to
behaviors do not take effect in real time. To enact changes to existing behaviors, rein-
stall the scenario. Alternatively, go to Entity, and clear and select the behavior in Beha-
vior.

11.3 Behavior execution
The behavior executes several times a second until it completes or the scenario stops. Beha-
vior execution is measured in ticks that occur several times a second. With each tick, the root
node executes one step of logic, which in turn may tick some or all of the descendant nodes,
depending on the structure of the tree and the individual node types. Each type of node has its
own strategy or style of execution that determines how long it executes and which processing
takes place during each tick. For example, a Repeat Always node always executes its child
node once per tick and never completes execution itself. On the other hand, an extremely
simple behavior might consist only of a single action node that completes execution in a
single tick.

When a node finishes execution, it returns success or failure. The parent node may use this
status value when deciding how to carry on. In some cases, a failure means the entire beha-
vior fails and stops executing immediately. In other cases, the behavior tries again and suc-
ceeds once the sub-task succeeds, no matter how many attempts it takes.

Copyright © 2023 Advanced Simulation Technology inc. 37

Construct User Guide (Rev. C, Ver. 2)

To access Behavior Viewer, select behavior viewer page on Behaviors.

Figure 41: Behavior viewer page link

Behavior Viewer shows behavior execution and supports inserting breakpoints on nodes to
suspend behavior execution for analysis. This tool becomes especially useful when building
and debugging large behaviors.

Figure 42: Behavior Viewer

11.4 Behavior node types
Behavior node types and their parameters are described below. Many behaviors in Construct
focus on listening for keywords using speech recognition, then generating a corresponding
voice response.

Listen and Say are two types of action nodes, which cause the entity to actually take some
specific action in the environment.

38 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

11.4.1 Composite nodes
The following table shows composite behavior nodes:

Node Type Function

Selector Runs its children in sequence until one succeeds. Returns success as soon as a single
child succeeds.

Sequence Runs its children in sequence until one fails. Returns success only if all children suc-
ceed.

Parallel Runs its children in parallel, with the return value determined by the Policy setting. If
Policy is require one, then success is returned when any child succeeds. If require
all is set, then success is returned only when all children have succeeded. Parallel exe-
cution of children here means that for each tick of the Parallel node, each of its child
nodes run one tick.

Table 3: Composite nodes

11.4.2 Repeat nodes
Table 4, "Repeat nodes" below shows repeat behavior nodes:

Node Type Function

Repeat-Always Repeatedly runs its child to completion regardless of the child's success or fail-
ure. This node type never returns.

Repeat-Until-Suc-
ceed

Similar to Repeat-Always, but returns success when its child succeeds.

Repeat-Until-Fail Similar to the above, but returns success when its child fails.

Table 4: Repeat nodes

Copyright © 2023 Advanced Simulation Technology inc. 39

Construct User Guide (Rev. C, Ver. 2)

11.4.3 Action nodes
The following table shows action behavior nodes:

Node Type Function

Say Speak text using text-to-speech (TTS) or a sound if one is selected. Supports text
substitution using variables whose names are prefixed with "$." For example,
"Roger, this is $callsign" returns success if the speech completes or fails if speech
variables couldn’t be resolved. Upon the speech finishing, a variable _lastSaid is
set on the entity blackboard containing the text of what was spoken, or the sound
ID if a sound was played. When the node is about to succeed, three variables are
temporarily set on the entity blackboard:
l rec_text
l rec_meaning
l rec_conf

The expression is then evaluated, which may read these values and save them
elsewhere, then the three variables are cleared from the blackboard.

Listen Blocks until a voice message is received, at which time it succeeds or fails based
on whether the specified Keywords and require conditions are matched. Keywords
are a comma-separated list of words in the message text. Require is a behavior
expression (explained below) that is evaluated to True or False.

Assert Succeeds or fails based on the evaluation of the specified expression.

AssertPosition Succeeds if the entity is currently within distance meters of the point specified by
the X, Y, and Z coordinates.

VBS Command Executes a scripting command on an attached Virtual Battlespace (VBS) instance,
if one exists. Returns success if the command executes or fails if VBS isn't con-
nected.

Event Waits until a specific named event occurs, at which time success is returned. Fails
if a different event is raised first.

Wait Waits Time seconds and then succeeds.

Wait-for-Silence Waits for radio silence and succeeds when silence is detected or fails if Timeout
seconds elapses first.

Expression Evaluates the expression against the entity blackboard.

Table 5: Action nodes

40 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

11.4.4 Utility nodes
Utility nodes support exactly one child node and modify the child's execution or return value
in some way. The following table shows utility behavior nodes:

Node Type Function

Timeout Executes the child until it returns, or until time has elapsed. The FinalValue
parameter determines the success or failure of this node upon timeout.

Limit Limits the execution rate (tick rate) of its child to a specified interval in
seconds.

Flip Runs its child until completion but returns an inverted success or failure result.

Exc-Handler Catches and suppresses exceptions raised when executing its child. Returns
the success or failure value from the child, unless an exception is raised, in
which case it always fails.

Table 6: Utility nodes

11.5 Behavior expressions
Several node types evaluate expressions during execution as a means to modify the entity and
influence behavior execution. Expressions are entered by the behavior developer in a simple
syntax that should look familiar to programmers that have used imperative programming lan-
guages (e.g., C, Python).

All expressions are evaluated against the entity's blackboard, which is a simple storage area
for each entity's data. For example, the expression count = 1 sets a variable count to the value
1 in the current entity. Blackboard variables can then be used as variables in speech or be ref-
erenced for other purposes by other nodes in the behavior.

In addition to being able to read and write arbitrary variables on the entity blackboard, expres-
sions can access the entity’s web page attributes through an implicit blackboard variable
named entity. For example, to change the run time entity's name, use the entity.name =
"John Oliver" expression.

Expressions:

l May contain multiple statements separated by semicolons

l Support creating and manipulating data in the JavaScript Object Notation (JSON)
format

l Are executed by a simple interpreter that does not support complex statements

l Retrieve and set variables on the entity blackboard

Copyright © 2023 Advanced Simulation Technology inc. 41

Construct User Guide (Rev. C, Ver. 2)

Example expressions that demonstrate the available operators and functions:

Expression Note
count = 1 Number assignment

count += 2 Number increment

count -= 2 Number decrement

count == 3.3 Number equality

count != 3.3 Number inequality

x = count * 2 Number multiplication

name = "Striker 7" String assignment

name == "Striker 6" String equality

name != "Striker 6" String inequality

"three two" in text String contains

times = [1,2,3] List assignment

times.append(5) List append

times.remove(5) List remove

time = times[1] List access

flight = { "number": 42 } Object assignment

flight["number"] = 43 Object item assignment

flight["number"] Object item access

x || y Logical OR

x && y Logical AND

tmp = count; count = 0 Chaining multiple statements

a=1; b=2; c=a+b; d=c*55; Chaining multiple statements; accessing variables

Table 7: Example expressions

42 Copyright © 2023 Advanced Simulation Technology inc.

Construct User Guide (Rev. C, Ver. 2)

	1.0 Introduction
	1.1 Speech licenses

	2.0 Scenario Management
	2.1 Add a scenario

	3.0 Comm Plan
	4.0 Entities
	4.1 Add an entity
	4.2 Monitor entities
	4.3 Entity action

	5.0 Interactions
	5.1 Add an interaction

	6.0 Sounds
	6.1 Add a sound

	7.0 Language models
	7.1 Enable speech recognition
	7.2 Grammar syntax

	8.0 Radio Effects
	9.0 Construct Settings
	10.0 AIML
	10.1 AIML tags
	10.2 AIML Construct integration
	10.3 AIML responses and meaning values
	10.4 Create and map AIML definition to entity

	11.0 Behaviors
	11.1 Create a new behavior
	11.2 Map new behavior to entity
	11.3 Behavior execution
	11.4 Behavior node types
	11.4.1 Composite nodes
	11.4.2 Repeat nodes
	11.4.3 Action nodes
	11.4.4 Utility nodes

	11.5 Behavior expressions

